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features are beautifully captured by a four-dimensional topologically twisted N = 4 theory

which has been coupled to a surface defect theory on which chiral matter can propagate.

From the vantagepoint of the four-dimensional topological theory, these defects are surface
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find that the unfolding of the singularity in the F-theory geometry precisely matches to

properties of the topological theory with a defect.
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1. Introduction

String theory appears to provide a large number of consistent vacua which can accomodate

the observed features of the Universe. Given this perhaps embarassment of riches, it

is natural to ask whether the deeper understanding of non-perturbative features of string

theory obtained in the post-duality era provides some degree of uniqueness or at least some

novel concrete predictions for upcoming experiments.

There are encouraging signs that string theory naturally includes many of the qualita-

tive features of the Standard Model such as classical unitary gauge groups and bifundamen-

tal chiral matter. Indeed, these are ubiquitous features of D-brane realizations of gauge

theories. Reviews of the vast literature of models which attempt to realize the Standard

Model via D-branes may be found in [1 – 4].

Independent of its connection to string theory, a compelling motivation for low energy

supersymmetry is that the particle content of the MSSM improves the unification of the

gauge coupling constants observed in the Standard Model. But because the a priori

independent volumes of cycles wrapped by D-branes control the values of the gauge coupling

constants, D-brane constructions of Standard Model-like vacua tend to obscure this fact.

Both gauge coupling unification as well as the matter content of the Standard Model hint at

the presence of a unified gauge group structure at high energies.1 In fact, this unification

naturally suggests the presence of an exceptional gauge group looming in the background.

Indeed, there is a natural sequence of E-group embeddings2 depicted in figure 1 which give

the Standard Model gauge group and matter structure in an elegant manner:

E3 × U(1) ⊂ E4 ⊂ E5 ⊂ E6 ⊂ . . . (1.1)

where E3 = SU(3) × SU(2) denotes the non-abelian gauge group of the Standard Model,

E4 = SU(5) and E5 = SO(10). Some early field theory realizations of this paradigm may

be found in [6 – 8].

1This is not to say that the unification of gauge couplings in GUT-like models cannot be realized in

D-brane constructions. See [5] for one early realization of a D-brane GUT.
2Note that even though in four dimensions only E6 and lower rank exceptional groups can contain chiral

matter, in the context of higher dimensional theories coming from string theory, all of these groups can

have chiral matter. In this sense string theory completes the link between GUT theories and all exceptional

groups by bringing the higher dimensions into play.
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Figure 1: Dynkin diagrams for the E-series of Lie Groups. Starting from E8, deleting the

rightmost node of each successive diagram produces the next entry. The entry E3 = SU(3)×SU(2)

is the non-abelian gauge group of the Standard Model.

Moreover, packaging the field content of the Standard Model into the appropriate

GUT multiplet is not always possible in D-brane realizations. Indeed, although the clas-

sical groups appear in this sequence of embeddings, only one and two index tensor rep-

resentations of the gauge groups can appear in D-brane constructions. In particular, for

SO(10) GUTs, the matter content of the Standard Model organizes into the 16 spinor rep-

resentation. This representation is conspicuously absent from perturbative D-brane setups.

Further issues pertaining to D-brane realizations of GUT models are in discussed in [9].

– 3 –
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From this perspective, we interpret the unification of the gauge couplings in the min-

imal supersymmetric extension of the Standard Model as evidence that instead of the

infinitely complex variety of classical groups and matter which can appear in string theory,

the list of relevant simple gauge groups is limited to the finite number of exceptional gauge

groups and their subgroups.3 This is a vast simplification!

In this paper we take as given that the gauge groups unify into a GUT and further

that the matter content of the Standard Model descends naturally from the representation

content of an exceptional gauge group.4 For this reason, we now focus on how exceptional

gauge groups arise in string theory. Perhaps the most obvious answer is the E8 × E8

heterotic string, as was already exploited more than two decades ago [11]. Nevertheless, as

reviewed in [12], the simplest approach in this direction does not quite succeed because the

perturbative heterotic E8 × E8 string compactified on an isotropic Calabi-Yau threefold

makes an (incorrect) prediction for the relation between MGUT and Mpl:

M2
GUT

M2
pl

& α
4/3
GUT. (1.2)

Witten has shown in [12] that the above bound can be significantly weakened in the

strongly coupled regime of the heterotic E8 × E8 string described by M-theory compact-

ified on S1/Z2. In the Hořava-Witten description, each E8 gauge group factor confines

to a ten-dimensional “end of the Universe” boundary of the eleven-dimensional M-theory

compactification [13]. As shown in [12], separating the two boundaries far away from one

another significantly weakens the above bound. At a pragmatic level this allows us to

focus on one of the E8 boundary walls as leading to the observed gauge symmetries of the

Standard Model.

But many properties of the E8 wall are mysterious. In particular, the argument for

the choice of the E8 gauge group is based primarily on anomaly considerations. This fact

presents a hindrance towards a more detailed description of the properties of the matter

content and their interactions.

Further insight is possible for exceptional gauge groups which are realized by the

geometry of exceptional singularities in string theory. For example, real codimension four

gauge theories defined by type IIA in six dimensions or M-theory in seven dimensions

can provide a geometric understanding of exceptional gauge groups when the internal

compactified directions are local singularities of the type:

C
2/Γ (1.3)

where Γ is one of the three exceptional subgroups of SU(2), leading to E6,7,8 gauge sym-

metries. Similarly, compactifications of F-theory on such a singularity descend to eight-

3Alternatively, even if one views gauge coupling unification as an accident, non-trivial qualitative criteria

such as the existence of a self-similar duality cascade structure can emerge from properties natural to D-

branes in the large N limit of the MSSM or some minimal extension thereof [10].
4By this we do not mean that we will restrict our model building efforts to four-dimensional E6 GUTs.

Indeed, as we shall argue below, many of the necessary features of even more conventional GUTs require

the presence of an E6,7,8-type gauge group which may be broken by the geometry of the F-theory compact-

ification.
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dimensional gauge theories. This eight-dimensional theory is interpreted as the worldvol-

ume of a non-perturbative seven-brane in a type IIB compactification.5 As opposed to the

E8 wall of Hořava-Witten theory, in the geometric approach there are a number of analytic

tools available for describing the unfolding of geometric singularities.

An N = 1 supersymmetric GUT theory with exceptional gauge group derived from a

geometric singularity can arise either from M-theory compactified on a seven-dimensional

manifold of G2 holonomy [15] or from F-theory compactified on an elliptic Calabi-Yau four-

fold [16]. In the G2 case, the absence of holomorphic structure limits the analytic control

over detailed properties of the geometry. By contrast, in the Calabi-Yau fourfold case, the

complex/Kähler geometry allows a more powerful array of techniques. For this reason,

compactifications of F-theory on Calabi-Yau fourfolds preserving N = 1 supersymmetry

in four dimensions have been extensively studied. A foundational example of this work

is [17]. To the best of our knowledge, however, no systematic study of the connection

between F-theory and GUTs has been undertaken (see, however, [18] for some progress in

this direction). Some work in this direction has been done in connection with models with

a heterotic dual. Even in these examples, though, a direct analysis from the vantagepoint

of F-theory has not been given yet. However, as we explain below, we do not wish to

assume that a given model has a well-defined heterotic dual. Our aim in this work and

the followup paper [19] is to take a first step in filling this gap. We note that independent

work on extracting the chiral matter content directly from F-theory and matching these

results to heterotic duals has recently appeared in [20].

At a foundational level, there is another reason to study models constructed from E-

type singularities in F-theory in their own right, as opposed to appealing to a potential

heterotic dual. Recall that F-theory compactifications with a heterotic dual derive from the

basic duality between compactifications of F-theory on an elliptic K3 and its heterotic dual

on a T 2. Extending this duality fiberwise over a complex surface S, we achieve a duality

between heterotic strings compactified on Calabi-Yau threefolds elliptically fibered over S

and F-theory compactified on a Calabi-Yau fourfold given by an elliptic K3-fibration over

S. Geometrically, the condition that an elliptic fibration of S yields a Calabi-Yau threefold

requires that S be of Fano type. Said differently, there exist a large class of heterotic and

F-theory compactifications which may not possess a dual description. In order to maintain

maximal flexibility for future model building applications, we shall therefore not limit our

considerations to models with a well-defined heterotic dual.6

As mentioned previously, gauge groups in F-theory arise from codimension one singu-

larities in the base which are in turn identified with the worldvolume of some seven-branes.

In order to maintain a finite gauge coupling constant in the four-dimensional effective the-

ory on R
3,1, we assume that the seven-brane wraps a compact complex surface S of real

dimension four. Turning on a supersymmetric gauge field configuration on S in some sub-

group HS ⊂ GS breaks the gauge group GS to the commutant of HS in GS . This provides

5 In fact, the Hořava-Witten E8 wall can also be related to such singularities upon further compactifi-

cation [14].
6In particular, in section 7 we speculate on one possible model building application when S is not a

Fano variety.
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an economical way to break the exceptional gauge group to gauge symmetries closer to the

MSSM. Moreover, when this supersymmetric gauge field configuration has a non-trivial

overall U(1) factor, the resulting spectrum can contain chiral matter originating from the

zero modes of fields propagating in the bulk of S.

Along a codimension two subspace of the threefold base defined by a Riemann surface

Σ ⊂ S, the rank of the singularity type can increase. As discussed in [21, 22], this leads to

matter living on Σ. The Riemann surface Σ can be viewed as the intersection locus of two

singularities fibered over two different complex surfaces S and S′. From the perspective

of the threefold base, S′ can be viewed as the locus of another seven-brane which may

be non-compact. The fields localized on Σ are a direct extension of the bi-fundamental

fields obtained from the intersection of D-branes to the more general case of colliding

singularities. A non-trivial background gauge field configuration on Σ can also induce a

four-dimensional chiral matter spectrum.

The fields of the MSSM interact via cubic couplings. In the present class of models,

Yukawa couplings among chiral matter come about in three different ways. The first type

correspond to couplings between three bulk fields on S. When S is a Hirzebruch or del

Pezzo surface, these couplings all vanish. The second type of coupling comes from the

interaction between two fields living on Σ and one living on S (ΣΣS). The last type of

Yukawa coupling occurs when the zero mode wave functions for fields localized on three

such Σ’s intersect at a point (ΣΣΣ). This type of coupling turns out to be generic in the

case of exceptional singularities.7

It turns out that there is a beautiful interplay between the topological field theories

which dictate the matter content coming from S and Σ. The relevant degrees of freedom

living on S are captured by an N = 4 topologically twisted theory of the type studied

in [24]. Furthermore, the matter fields coming from Σ are well-described by another

topological field theory defined on Σ which naturally couples to the bulk theory on S as a

defect theory. The coupling of these two topological theories leads to sources for some of

the fields in the bulk theory on S when the fields on Σ develop a vev. This turns out to

nicely correspond to the unfolding of the singularity in F-theory.

The primary aim of the present paper is to flesh out these ideas and to set the ground-

work for potential applications. Although we shall present some examples of semi-realistic

models, more phenomenologically viable constructions of GUTs from F-theory will appear

in the followup paper [19].

The rest of this paper is organized as follows. In section 2 we describe the basic setup.

In section 3 we describe the simplest F-theory geometry with exceptional singularities

localized on an isolated seven-brane. Furthermore, we introduce the eight-dimensional

partially twisted topological theory corresponding to the worldvolume of a general seven-

brane and show that the geometric unfolding of the singularity exactly matches to degrees of

freedom in the gauge theory. We also consider the possibility of turning on supersymmetric

background gauge fields on the seven-brane and analyze the resulting (chiral) matter and

7In some very special situations studied in [23], a further enhancement in the singularity may not

correspond to an ADE type singularity. We discuss some of the physics of this case in appendix G.
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existence (or absence) of Yukawa couplings among them. In section 4 we introduce the

partially twisted theory describing a more general class of compactifications in which seven-

branes intersect along Riemann surfaces in S. In this same section, we also discuss how

four-dimensional chiral matter can arise on such intersections and compute the Yukawa

couplings between pairs of chiral matter fields living on a Riemann surface and bulk gauge

fields in S. Even in this more general class of models, we observe a harmonious match

between gauge theory and geometric degrees of freedom. In section 5 we study subloci of

real codimension four in S along which the singularity type enhances to even higher rank.

We find that for certain geometries, such points signal the presence of additional Yukawa

couplings among chiral matter fields with wave functions localized on Riemann surfaces.

In section 6 we present a toy model which incorporates many of the ingredients developed

in previous sections. Section 7 presents our conclusions. Additional background and more

technical material is included in the appendices.

2. General overview

In this section we present an overview of the types of models we shall treat. Our setup

is locally given by the worldvolume of a seven-brane of generalized ADE-type in a com-

pactification on a Calabi-Yau fourfold. Letting S denote a Kähler manifold of complex

dimension two which is wrapped by the seven-brane, the resulting local model will reduce

to an N = 1 supersymmetric theory in four dimensions. In order to work in the limit

in which gauge dynamics decouple from gravity, we sometimes restrict our attention to

geometries where S can shrink to zero size inside a general threefold base. This is also

natural from the viewpoint of the strongly coupled limit of the heterotic E8 ×E8 string in

that the bound of (1.2) can be evaded. In addition, in this limit there are no additional

massless scalar fields corresponding to the motion of S inside the threefold base of the

F-theory compactification. For all of these reasons, we shall sometimes require that the

anti-canonical bundle of the surface S is ample so that such a contraction is possible. This

amounts to the condition that S is a del Pezzo surface.

As will be discussed in greater detail in later sections, there are in general two ways

in which chiral matter can arise from such a theory. The first corresponds to turning on

a gauge field configuration on S with non-trivial first Chern class. Given a field which

transforms in a representation of the structure group for the holomorphic gauge bundle on

S, the number of net generations will be given by an index computation.

Another source of matter originates from six-dimensional chiral fields localized along

Riemann surfaces in S. In many cases this can be interpreted as the intersection locus of

distinct seven-branes. This chirality can be preserved in four dimensions when a suitable

background gauge field configuration has been turned on along the Riemann surface. To

see how this comes about, recall that an F-theory compactification will generically contain

three types of singularities. Over the locus given by the holomorphic surface S, the

corresponding singularity of ADE type will give rise to a gauge group which we denote by

GS . This singularity may collide with another singularity with gauge group GS′ supported

on a non-compact complex surface S′. See figure 2 for a depiction of the intersecting seven-

– 7 –
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GS GΣ

GS’

Figure 2: Depiction of intersecting seven-branes wrapping a compact surface S with gauge group

GS and a non-compact surface S′ with non-dynamical gauge group GS′ . In the threefold base of

the F-theory compactification, the intersection locus of S and S′ is a Riemann surface where the

singularity type enhances further to GΣ ⊃ GS ×GS′ .

brane locus in the case where S is compact and S′ is non-compact. Over the Riemann

surface Σ defined by the intersection of S and S′, the singularity type enhances to GΣ

such that:

GΣ ⊃ GS ×GS′ . (2.1)

For the case of SU(N +M) ⊃ SU(N)×SU(M), this corresponds to intersecting D7-branes

and the matter localized at the intersection transforms in the (N,M ). More generally, the

six-dimensional chiral matter localized on Σ transforms under the analogous projection of

the adjoint of GΣ to GS as in [22] for breaking GΣ to a subgroup with some number of U(1)

factors. When the bulk gauge field on Σ has non-trivial first Chern class, the resulting

spectrum in four dimensions can be chiral. The net number of generations localized on

Σ is given by an index computation on the Riemann surface for fields charged under the

given combination of background U(1) gauge fields.

We now explain the origin of Yukawa couplings in this setup. There are a priori three

ways in which non-trivial interaction terms can arise. The first possibility corresponds to

interactions between three bulk fields of the eight-dimensional theory. As we will argue in

section 3, such interaction terms are identically zero when S is either a Hirzebruch or del

Pezzo surface. The second type of interaction term originates from the coupling between

a single bulk field on S with two matter fields localized along a Riemann surface Σ in S.

The final type of interaction originates from the triple overlap at a single point in S of

matter fields localized along three matter curves. We find that in many cases of interest,

such triple overlaps are a generic feature of F-theory compactifications.

One may also wonder if there are instanton corrections to the Yukawa couplings. In

F-theory the natural source for such instantons are wrapped Euclidean D3-branes [25],

which in the present case means wrapping D3-branes on S. Note, however, that this is

nothing but the usual contribution from gauge theory instantons. In the regime of interest

for GUT models where 1/g2
YM ≫ 1, such contributions lead to very small corrections on

the order of exp(−a/g2
YM) for some O(1) constants a, so for the purposes of this paper we

shall ignore these effects.

– 8 –
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3. Partially twisted gauge theory on a seven-brane

As a warmup for the rest of the paper, in this section we determine the four-dimensional

effective theory for a class of particularly simple F-theory compactifications which preserve

only N = 1 supersymmetry in four dimensions. Specifically, in section 3.1 we consider local

F-theory geometries which describe a small neighborhood of a seven-brane with worldvol-

ume R
3,1 × S, where S is a compact Kähler surface and the worldvolume gauge group GS

is of arbitrary ADE-type.

In section 3.2 we argue that the dynamics of the low-energy degrees of freedom in

F-theory are captured by a partially twisted version of the maximally supersymmetric

Yang-Mills theory on R
3,1 × S. We also present evidence that the partially twisted Yang-

Mills theory correctly describes the moduli of the given background in F-theory.

In section 3.3 we determine some basic properties of the four-dimensional effective

theory for this special class of F-theory models. In particular, we present the BPS equations

of motions for the eight-dimensional fields in the partially twisted Yang-Mills theory and

subsequently study supersymmetric vacua in the presence of a non-trivial background gauge

field configuration on S. We find that while many vacua support a chiral matter spectrum

in four dimensions, when S is a Hirzebruch or del Pezzo surface, all Yukawa couplings

identically vanish.

3.1 A local model for X

To set our notation, we consider F-theory [16, 26, 27] on a background of the form R
3,1 ×X ,

where X is a Calabi-Yau fourfold. By assumption, the fourfold X fibers elliptically with a

section over a complex threefold B,

E −→ Xyπ

B

, (3.1)

and in general, the elliptic fiber E of X degenerates over a locus ∆ of complex codimension

one in B,

∆ ⊂ B . (3.2)

Physically, ∆ encodes the location of various seven-branes in B, and the nature of

the singularities in E over ∆ determines the worldvolume gauge group on each seven-

brane. From the perspective of the present paper, what is extremely interesting about

F-theory is that with the appropriate singularity in E, seven-branes wrapping ∆ can carry

a worldvolume gauge group of arbitrary8 ADE-type. While the gauge groups SU(n + 1)

or SO(2n) can be realized using D7-branes and (in the latter case) orientifold planes,

a seven-brane with worldvolume gauge group E6,7,8 is a rather mysterious object that

cannot be described perturbatively in string theory. We shall refer to such seven-branes

as “exceptional”.

8In the presence of monodromies, even non-simply-laced gauge groups are possible, though we will not

exploit this possibility in the present paper.
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In addition to seven-branes, a general F-theory background may also contain spacetime

filling D3-branes which sit at points in B, as well as supersymmetric fluxes associated to

either the bulk supergravity fields on B or to the worldvolume gauge fields on ∆. However,

for reasons to become clear momentarily, only the worldvolume fluxes on ∆ will play a role

in the F-theory models we study.

F-theory on X typically represents a strongly-coupled background of string theory, and

to make progress in even our low-energy analysis, we make two simplifying assumptions.

First, we focus attention throughout on local, non-compact models which describe only a

small neighborhood of ∆ inside B, with neither D3-branes nor bulk fluxes present.9 With

this assumption, gravity decouples in four dimensions, and modulo exotic possibilities such

as that reviewed in appendix G, we expect to obtain an N = 1 supersymmetric gauge

theory on R
3,1 which captures the effective dynamics of the light worldvolume degrees-of-

freedom living on ∆. This gauge theory is the analogue for seven-branes in F-theory of the

well-known quiver gauge theories which describe D-branes at singularities in perturbative

compactifications of type IIB string theory on Calabi-Yau threefolds.

Even in local models for B, the geometry of the seven-brane configuration represented

by ∆ can be quite complicated. For instance, ∆ might be reducible and hence appear as

a union of several components associated to loci of colliding singularities in the elliptic

fibration over B. As our second simplifying assumption, we suppose that ∆ consists only

of an irreducible, smooth, compact, complex surface S embedded in B. So in this section,

we study the worldvolume theory on a single seven-brane which wraps R
3,1 × S in F-theory

on X. Later in sections 4 and 5, we extend our analysis to the case that ∆ is reducible

and multiple seven-branes intersect in B.

Before we proceed to a fairly detailed analysis of the worldvolume gauge theory living

on a seven-brane of arbitrary ADE-type wrapping R
3,1 × S, let us first present a local

model for the Calabi-Yau fourfold X which describes F-theory in the background of such

a brane. Since we are already working with a local model for B, we will also work with a

local model for X. We thus take X to be a local elliptic K3-fibration over S of the form

Y −→ Xyπ

S

, (3.3)

where we model the local elliptically-fibered K3-surface Y on a hypersurface in C
3 with

an isolated ADE singularity at the origin.

Not suprisingly, the ADE singularities play a prominent role throughout the paper. In

terms of coordinates (x, y, z) on C
3, we recall that the ADE singularities can be presented

9The D3-branes on ∆ are included in our construction as they would correspond to internal point-like

instantons for gauge fields on ∆, which is a special case of what we will study in this paper.

– 10 –
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canonically as below.

An y2 = x2 + zn+1

Dn y2 = x2z + zn−1

E6 y2 = x3 + z4

E7 y2 = x3 + xz3

E8 y2 = x3 + z5

(3.4)

In the following work we shall sometimes rescale these coordinates by overall numerical

coefficients in order to more easily compare our results with the unfolding of singularities

in [28].

If X is to be Calabi-Yau, then the hypersurface Y must fiber appropriately over S.

To describe the fibering, we promote the local coordinates (x, y, z) in (3.4) to transform as

sections of a rank three bundle V over S which is given as a sum of tensor powers of the

canonical bundle KS ,

V = Ka
S ⊕Kb

S ⊕Kc
S . (3.5)

Here (a, b, c) are three integers associated to (x, y, z) which we must determine.

The integers (a, b, c) necessarily satisfy two conditions for the simple local model of X

to exist. First, in order that the defining equations for Y in (3.4) make sense, the individual

terms in each equation must transform as sections of the same line bundle over S. This

yields the homogeneity conditions:

An 2b = 2a = (n+ 1)c

Dn 2b = 2a+ c = (n − 1)c

E6 2b = 3a = 4c

E7 2b = 3a = a+ 3c

E8 2b = 3a = 5c

(3.6)

Second, the Calabi-Yau condition on X implies that the holomorphic two-form (1/y) dx∧dz
on Y transforms over S as a section of KS . Thus (a, b, c) also satisfy

a − b + c = 1 . (3.7)

Together, the equations in (3.6) and (3.7) admit the following unique solutions.

An a = n+1
2 b = n+1

2 c = 1

Dn a = n− 2 b = n− 1 c = 2

E6 a = 4 b = 6 c = 3

E7 a = 6 b = 9 c = 4

E8 a = 10 b = 15 c = 6

(3.8)

For the cases other than An with n even, (a, b, c) in (3.8) are integers, so the local model for

X which describes a seven-brane of ADE-type wrapping S clearly exists. To treat the case

of An with n even, for which we see that a and b in (3.8) are only half-integral, we make an

elementary change of variables to realize the An singularity as xy = zn+1. Homogeneity of

the latter equation implies that a+ b = (n+ 1) c, and the Calabi-Yau condition on X now
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fixes c = 1. Hence in this form, a local model for X with An singularity over S exists for

arbitrary integers a and b which satisfy a+ b = n+ 1.

Now, one interesting fact about the E-type singularities in (3.4) is that these singular-

ities appear automatically in the Weierstrass form:

y2 = x3 + f(z)x + g(z) . (3.9)

Here x and y can be interpreted as affine coordinates parameterizing the elliptic fiber E

of X, and f(z) and g(z) are determined as simple monomials in z by (3.4). In particular,

since x and y parameterize E, the coordinate z must parameterize the normal direction to S

inside the non-compact threefold B. Thus for E6,7,8, the base B is given by the total spaces

of the respective line bundles K3
S , K4

S , and K6
S over S. The particular numerology that

occurs here will later be quite significant for the worldvolume description of the exceptional

seven-brane.

For A- and D-type singularities, the coordinate z is similarly distinguished as param-

eterizing the normal direction to S inside B. This assertion can be checked directly by

analyzing global Weierstrass models for the elliptic singularities. Alternatively, in the An

case, one can simply note that according to (3.8), z transforms as a section of the canonical

bundle KS . Hence, if z parameterizes the normal direction to S inside B, the threefold

B is itself Calabi-Yau, as one expects for seven-branes which carry a perturbative gauge

group of type An.

Additionally, in the case of a Dn singularity, B is the total space of K2
S over S. The

total space of K2
S can be considered as the quotient of the local Calabi-Yau threefold

associated to KS by a Z2 involution of the fiber. This involution fixes S as the zero-section

of KS and acts freely elsewhere, so we naturally obtain a local orientifold geometry, as

expected for seven-branes which carry a gauge group of type Dn.

3.2 Twisting on S

To determine the effective worldvolume description of the seven-brane wrapping R
3,1 × S,

let us begin with the trivial case that S = C
2. In this case, F-theory reduced to

R
7,1 = R

3,1 × C
2 on the hypersurface Y with an isolated ADE singularity is described

at low energies by the maximally supersymmetric Yang-Mills theory with gauge group GS

of corresponding ADE-type.10

If we now regard C
2 as a local patch of S, the standard adiabatic argument suggests

that F -theory on X is still described at low energies by eight-dimensional Yang-Mills theory

on R
3,1 × S. However, in order to preserve N = 1 supersymmetry, this Yang-Mills theory

must be topologically twisted on S. By the end of the section, we will present some very

suggestive evidence that the partially twisted Yang-Mills theory on R
3,1 × S does describe

the light degrees of freedom of F-theory on X.

The idea of studying F-theory on X by means of the topological gauge theory living

on the worldvolume of the seven-brane wrapping R
3,1 × S is not new. This idea, including

10Note that because Y is non-compact, gravity decouples in eight dimensions.
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certain elaborations we consider later, was sketched over ten years ago in one of the foun-

dational papers [17] on N = 1 F-theory compactifications. However, the details behind

some of the ideas in [17] seem never to have been fleshed out, and doing so is one of our

goals here.

Actually, to refer to the twisted Yang-Mills theory on R
3,1 × S as “topological” is a bit

of a misnomer. In order to twist the eight-dimensional Yang-Mills theory on S, we will have

to use the fact that S is not a generic Riemannian four-manifold but rather, through the

embedding of S into B and hence X, carries an induced Kähler structure. As we explain

later, the observables of primary interest which determine the effective superpotential in

four dimensions will be insensitive to the particular Kähler metric on S. On the other

hand, these observables will certainly depend on the complex structure of S.

For supersymmetric gauge theories in dimensions three and four, many qualitatively

distinct possiblities for twisting exist. However, the possibilities for twisting supersymmet-

ric gauge theories in higher dimensions are much more restricted. Given that S is Kähler,

the maximally supersymmetric Yang-Mills theory in eight dimensions admits a unique twist

on R
3,1 × S which preserves N = 1 supersymmetry in four dimensions. As a result, once

we argue that F-theory on X is described by a twisted Yang-Mills theory on R
3,1 × S, we

have no choice about which twist to consider.

The procedure of twisting the maximally supersymmetric Yang-Mills theory on

R
3,1 × S is entirely standard, but since this gauge theory and its later elaborations provide

our basic tool for studying F-theory on X, we now discuss the twist in some detail.

We start with the maximally supersymmetric Yang-Mills theory in ten dimensions

on R
9,1. In ten dimensions, the super Yang-Mills multiplet consists of a gauge field and

an adjoint-valued fermion which transforms under SO(9, 1) in the positive-chirality spinor

representation 16+. This theory preserves sixteen supersymmetries, which transform in

the representation 16+.

Under reduction to R
7,1, the Yang-Mills multiplet decomposes into an eight-

dimensional gauge field which we denote by A, two real scalar fields Φ8 and Φ9, and

two fermions Ψ±. Each of the scalars and fermions transforms in the adjoint represen-

tation of the gauge group. For later use, we now introduce the following complex-linear

combinations of Φ8 and Φ9,

ϕ = Φ8 + iΦ9 , ϕ = Φ8 − iΦ9 . (3.10)

The eight-dimensional Yang-Mills theory preserves SO(7, 1) × U(1)R as a global

symmetry, under which the fermions Ψ± transform as respective summands in the

reducible representation

16+ 7−→
(
S+,+

1

2

)
⊕
(
S−,−

1

2

)
. (3.11)

Here S± denote the positive and negative chirality spinor representations of SO(7, 1). Also,

the complex scalar fields ϕ and ϕ transform trivially under SO(7, 1) and with charges ∓1

under U(1)R.
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To twist the gauge theory on R
7,1 = R

3,1 × C
2, we further reduce the global symmetry

group from SO(7, 1) × U(1)R to

SO(3, 1) × SO(4) × U(1)R . (3.12)

Under (3.12), both the fermions Ψ± and the corresponding supersymmetry generators ǫ±
transform as

(
S+,+

1

2

)
7−→

[
(2,1), (2,1),+

1

2

]
⊕
[
(1,2), (1,2),+

1

2

]
,

(
S−,−

1

2

)
7−→

[
(2,1), (1,2),−1

2

]
⊕
[
(1,2), (2,1),−1

2

]
. (3.13)

Here we make use of the standard local isomorphism SO(4) ∼= SU(2) × SU(2), and similarly

for SO(3, 1), to describe the representation content in (3.13). Thus, (2,1) describes the

left handed chiral spinor of either SO(4) or SO(3, 1), and (1,2) describes the right handed

anti-chiral spinor.

If S were an arbitrary Riemannian four-manifold, we would now specify the twist on

S by an embedding of the global U(1)R symmetry into SO(4), identified with the structure

group of the tangent bundle of S. However, at this point we make use of the fact that

S is Kähler so that the structure group of the tangent bundle of S actually reduces from

SO(4) to U(2). Hence the possible twists on S are specified by embeddings of U(1)R into

the smaller group U(2).

Up to isomorphism, a unique topological twist is possible, under which U(1)R is em-

bedded into the central U(1) subgroup of U(2). To present the twist, we let R be the

generator of U(1)R. Similarly, we let J be the generator of the central U(1) subgroup in

U(2). We normalize J so that under the reduction from SO(4) to U(2), the chiral and

anti-chiral spinor representations of SO(4) decompose as

(2,1) → 20 , (1,2) → 1+1 ⊕ 1−1 , (3.14)

where the subscripts in (3.14) denote the U(1) charges under the central generator J .

Comparing (3.14) to (3.13), we see that in order to obtain four scalar supercharges on

S which descend to the standard N = 1 supersymmetry generators Qα and Qα̇ on R
3,1, the

new central U(1) generator Jtop in the twisted U(2) must be given by one of the following

linear combinations of the original generators J and R,

Jtop = J ± 2R . (3.15)

As one can check, either sign in (3.15) leads to an isomorphic twist, so we take

Jtop = J + 2R without loss of generality. This choice leads to somewhat more natural

conventions regarding holomorphy in the twisted Yang-Mills theory on S.

In the twisted theory, the fermions Ψ± and supersymmetry generators ǫ± now trans-

form under SO(3, 1) × U(2) as

[
(2,1) ⊗ 2+1

]
⊕
[
(1,2) ⊗ (1+2 ⊕ 10)

]
,

[
(1,2) ⊗ 2−1

]
⊕
[
(2,1) ⊗ (10 ⊕ 1−2)

]
. (3.16)
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Here the subscripts in (3.16) denote the charges under the central U(1) generator Jtop in

U(2). In particular, from the representations (1,2) ⊗ 10 and (2,1) ⊗ 10 appearing in (3.16),

we see that the twisted theory on S possesses four scalar supercharges (Qα , Qα̇), associated

to the fact that F-theory on X preserves N = 1 supersymmetry in four dimensions.

By the same token, the complex scalar fields ϕ and ϕ now transform under

SO(3, 1) × U(2) as:

(1,1) ⊗ 1∓2 . (3.17)

To interpret the twisted fermions in (3.16) geometrically, we fix conventions under

which the central U(1) in U(2) acts on vectors in the holomorphic tangent bundle TS

with charge +1 and dually on covectors in the holomorphic cotangent bundle Ω1
S with

charge −1. The twisted fermions then appear as forms of holomorphic/anti-holomorphic

type (p, 0) and (0, p) on S for p = 0, 1, 2. Corresponding to (3.16), we denote the twisted

fermions by:

ηα̇ section of ad(P ) ,

ψα = ψα m dsm section of Ω1
S ⊗ ad(P ) ,

χα̇ = χα̇ mn ds
m∧dsn section of Ω2

S ⊗ ad(P ) ,

(3.18)

and
ηα section of ad(P ) ,

ψα̇ = ψα̇ m dsm section of Ω1
S ⊗ ad(P ) ,

χα = χα mn ds
m∧dsn section of Ω2

S ⊗ ad(P ) .

(3.19)

Here, sm and sm are local holomorphic and anti-holomorphic coordinates on S which we

use to indicate the transformations of the twisted fermions as differential forms on S. As

standard, we also use α and α̇ for α, α̇ = 1, 2 to indicate the transformations of the twisted

fermions as either chiral or anti-chiral spinors on R
3,1. Finally, ad(P ) is the adjoint bundle

associated to a fixed principal GS-bundle P over S. Here we anticipate the possibility

of turning on a background instanton on S associated to the choice of a topologically

non-trivial GS-bundle P .

From (3.17), we also see that the twisted complex scalar ϕ now transforms on S as a

section of Ω2
S ⊗ ad(P ),

ϕ = ϕmn ds
m∧dsn , (3.20)

and the conjugate scalar ϕ transforms as a section of Ω2
S ⊗ ad(P ),

ϕ = ϕmn ds
m∧dsn . (3.21)

Equivalently, ϕ transforms as a section of KS ⊗ ad(P ), and ϕ transforms as a section of

KS ⊗ ad(P ).

A small paradox, and its resolution. Before delving further into the details of the

twisted Yang-Mills theory on S, let us discuss the basic physical interpretation of the twist.

As we will explain, the transformation of ϕ as a section of KS ⊗ ad(P ) presents a small

paradox, whose resolution proves to illuminate a basic feature of exceptional seven-branes

in F-theory.
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In the case that the seven-brane is a D7-brane in a perturbative compactification of

type IIB string theory, the transformation of the worldvolume scalar ϕ as a section of

KS ⊗ ad(P ) is very easy to understand. In that situation, B is a Calabi-Yau threefold,

and by the standard adjunction formula, the canonical bundle KS of S is isomorphic to

the holomorphic normal bundle NS/B of S inside B. Hence the twist of ϕ amounts to

the geometric statement that ϕ describes normal motion of the D7-brane wrapping S

inside B [29].

More generally, if B is not Calabi-Yau, the adjunction formula provides an isomorphism

KS = KB

∣∣
S
⊗NS/B , (3.22)

where KB

∣∣
S

denotes the restriction of the canonical bundle of B to S. For a seven-brane of

D- or E-type, the threefold B is not Calabi-Yau andKB is non-trivial, so we see from (3.22)

that the normal bundle NS/B is generally not isomorphic to the canonical bundle KS in

those cases.

On the other hand, the topological twist of Yang-Mills theory on S uniquely fixes ϕ to

transform as a section of KS ⊗ ad(P ) for a seven-brane of arbitrary ADE-type. So if our

geometric intuition for a D7-brane in a perturbative Calabi-Yau compactification is taken

at face value, the fact that ϕ generally transforms as a section of KS ⊗ ad(P ) as opposed

to NS/B ⊗ ad(P ) on the exceptional seven-brane presents a small paradox.

The resolution of this paradox turns out to be very instructive and provides immediate

evidence that the topologically twisted Yang-Mills theory on R
3,1 × S serves as a valid

worldvolume description for exceptional seven-branes in F-theory.

To explain why ϕ generally transforms as a section of KS ⊗ ad(P ) as opposed to

NS/B ⊗ ad(P ), we recall that the moduli for the positions of seven-branes in F -theory

are encoded by complex structure moduli of the Calabi-Yau fourfold X itself, since these

moduli determine the location in B of the discriminant locus ∆ on which the seven-branes

wrap. Thus to understand how ϕ describes the position of seven-branes in B, we must

really ask how ϕ can be used to deform the complex structure of X. In our local model,

X is a fibration of the ADE hypersurface Y over S, so we effectively want to consider how

an expectation value for ϕ translates into a deformation of the canonical equations for the

ADE-singularities in (3.4).

As a simple example, let us consider the case that Y describes an An singularity over

S, for which the seven-brane is an ordinary D7-brane. The general deformation of the An

singularity in (3.4) can be parameterized by n+ 1 complex variables (t1, . . . , tn+1) subject

to the single constraint t1 + · · · + tn+1 = 0, in terms of which the deformation is given by

y2 = x2 +
n+1∏

j=1

(z + tj)

= x2 + zn+1 +

n+1∑

k=2

sk(t1 , . . . , tn+1) z
n+1−k . (3.23)

Here sk is the elementary symmetric polynomial which is homogeneous of degree k in the

variables t1 , . . . , tn+1.
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Not coincidentally, the parameters (t1, . . . , tn+1) can also be interpreted as coordinates

on the Cartan subalgebra of the group GS = SU(n+ 1), in which form we identify them

with the eigenvalues of the adjoint-valued scalar field ϕ. Equivalently, we identify the

degree k symmetric polynomial sk with the degree k Casimir of ϕ,

s2(t1 , . . . , tn+1) = −1

2
Tr(ϕ2) ,

...

sn+1(t1 , . . . , tn+1) = det(ϕ) . (3.24)

Now, if the deformation in (3.23) is to make sense when z transforms as a section of

KS , the degree k polynomial sk(t1, . . . , tn+1) must transform as a section of Kk
S , simply so

that the deformed equation in (3.23) remains homogeneous as an equation on sections of

K
(n+1)
S . Under the identification in (3.24), this requirement is equivalent to the condition

that ϕ transform as a section of KS ⊗ ad(P ). Thus, as we certainly expect, the automatic

twisting of ϕ in the Yang-Mills theory on R
3,1 × S is consistent with the non-trivial fibration

of Y over S which defines X.

For the D- and E-type singularities, precisely the same geometric reasoning implies

that ϕ still transforms as a section of KS ⊗ ad(P ). Just as for the An singularities, we

recall [28] that the deformations of the general D- or E-type singularities are parameter-

ized by coordinates tj for j = 1, . . . , r on the Cartan subalgebra of the group GS , where

r = rk(GS) is the rank of GS . In terms of (t1, . . . , tr), the deformations of the ADE sin-

gularities in (3.4) can be presented as in the table below.

An y2 = x2 + zn+1 +
∑n+1

k=2 αk z
n+1−k

Dn y2 = −x2 z + zn−1 +
∑n−1

k=1 δ2k z
n−k−1 − 2 γn x

E6 y2 = x3 + z4

4 + ε2 xz
2 + ε5 xz + ε6 z

2 + ε8 x + ε9 z + ε12
E7 y2 = −x3 + 16x z3 + ε2 x

2z + ε6 x
2 + ε8 xz+

+ ε10 z
3 + ε12 x + ε14z + ε18

E8 y2 = x3 − z5 + ε2 xz
3 + ε8 xz

2 + ε12 z
3 + ε14 xz+

+ ε18 z
2 + ε20 x + ε24 z + ε30

(3.25)

Up to shifts of coordinates by an overall constant, the particular choices of minus signs

and numerical coefficients in the table above have been chosen in order to conform with

the presentation of the singularities of table 3 in [28] so that for example, αk = sk.
11 For

ease of comparison, we have retained the conventions of [28] for labelling the deformation

parameters of the D- and E-type singularities.

By analogy with the role of the symmetric polynomials sk in (3.23), each of the δ2k, γk,

and εk appearing in (3.25) is one of the fundamental invariant polynomials of degree k on the

Cartan subalgebra of GS . Specifically, for the case of a Dn singularity, the polynomials δ2k

11Here we deviate slightly from [28] by writing y2 = x2 + zn+1 as opposed to xy = zn+1. This distinction

is unimportant, though, because the deformations of the singularity are all independent of x and y. The

presentation given here proves convenient for providing a uniform treatment of the Calabi-Yau fourfold

condition for all singularities.
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are invariant polynomials of degree 2k on the Cartan subalgebra of SO(2n), given in terms

of the elementary symmetric polynomials by δ2k = sk(t
2
1, . . . , t

2
n), and γn = t1t2 · · · tn is

the invariant polynomial of degree n which represents the Pfaffian of SO(2n). Equivalently

in terms of Casimirs of SO(2n),

δ2(t1, . . . tn) = −1

2
Tr(ϕ2) ,

...

γn(t1, . . . , tn) = Pf(ϕ) . (3.26)

For the E-type singularities, each εk is an invariant polynomial of degree k in the coordi-

nates ti which parameterize the Cartan subalgebra of E6,7,8. The invariant polynomials for

E6,7,8 are notoriously complicated, but thankfully at the moment we only require knowledge

of their total degrees, indicated by the subscripts in (3.25).

In order for the deformations in (3.25) to make sense geometrically when the affine

coordinates (x, y, z) transform in the specific powers of KS given in (3.8), each invariant

polynomial δ2k, γk, and εk must transform in the tensor power of KS whose degree matches

the degree of the polynomial in (t1, . . . , tr). For instance, in the case of the E8 singularity,

each term appearing in the deformed equation in (3.25) must transform as a section of K30
S ,

since y2, x3, and z5 all transform as sections of K30
S according to (3.8). As one can easily

check, this condition implies that the invariant polynomial εk of degree k on the Cartan

subalgebra of E8 must transform as a section of the corresponding tensor power Kk
S , where

k runs over

(2, 8, 12, 14, 18, 20, 24, 30) . (3.27)

Once again, we physically interpret the coordinates (t1, . . . , tr) on the Cartan subal-

gebra of GS as the eigenvalues of the adjoint-valued scalar field ϕ. Because each degree k

Casimir of ϕ then transforms as a section of Kk
S , consistency requires that ϕ itself must

transform as a section of KS ⊗ ad(P ), just as we found from the twisted Yang-Mills the-

ory on S.

This simple observation is our first check that the degrees of freedom of the twisted

gauge theory on R
3,1 × S agree with the geometric description of F-theory on X. Reversing

our observation, we also obtain a powerful means to determine the low-energy description

of F-theory on more general X. Namely, if X is given by an arbitrary unfolding of the

singularity over S as in (3.25), then F-theory on X is still described at low-energies by

the partially twisted Yang-Mills theory on R
3,1 × S, but that Yang-Mills theory is now

in a background for which ϕ has a non-trivial, necessarily holomorphic expectation value,

determined by the coefficients in the unfolding of the ADE-singularity.

3.3 The four-dimensional effective theory

In this section we begin our analysis of four-dimensional supersymmetric vacua on R
3,1

associated to the partially twisted seven-brane theory. To this end, we first explain the

regime of F-theory compactifications for which we expect our analysis to remain valid.

In many topological quantum field theories, the primary purpose of the Lagrangian is
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to enforce the BPS equations of motion when the theory is studied classically at weak-

coupling. In the present case, however, the role of the eight-dimensional partially twisted

Lagrangian is more central because it determines the Yukawa couplings in the low-energy

effective theory on R
3,1. Additional features of the partially twisted eight-dimensional

theory are presented in appendices B and C.

In this subsection we extract the massless spectrum and F-terms of the four-

dimensional effective theory. Because this information only depends on holomorphic data

and not the Kähler metric, general arguments suggest that we can reliably compute this

result at large volume and then extrapolate to the regime of small volume, if desired. On

the other hand, the D-terms of the four-dimensional effective theory will in general receive

quantum corrections. In the regime of large volume, these effects can in principle be com-

puted by integrating out the corresponding massive Kaluza-Klein modes which arise from

compactification on S.

More precisely, the essential point which allows us to perform our analysis at large

volume is that we may view the supersymmetry transformation δ = δ1̇ + δ2̇ as a BRST-

operator. Because the states in the cohomology12 of δ transform in massless N = 1 chiral

multiplets, for the purposes of analyzing these states and their superpotential interactions,

we are free to take ω to be arbitrarily large. This observation is very important, since it

underlies our classical analysis of the effective theory on R
3,1 obtained by compactification

of the eight-dimensional Yang-Mills theory on S. Indeed, this fact allows us to reliably

compute both the massless spectrum and superpotential of the resulting theory.

From the perspective of the four-dimensional effective description in R
3,1, the eight-

dimensional fields of the partially twisted theory are packaged as two N = 1 chiral multi-

plets (Am, ψαm) and (ϕmn, χαmn), and a single vector multiplet (Aµ, ηα). In rigid N = 1

superspace, the chiral multiplets then organize into chiral superfields Φmn and Am with

lowest bosonic components ϕmn and Am, respectively. Letting FS denote the restriction

of the eight-dimensional field strength F to S, F
(0,2)
S corresponds to the lowest bosonic

component of an N = 1 chiral superfield F
(0,2)
S whose remaining components can be deter-

mined from the explicit off-shell transformations presented in appendix C. Summarizing

the end result of appendix C, the partially twisted action in eight dimensions consists of

contributions from δ trivial terms and an F-term:

IS =

∫

R3,1×S

d4xd2θO −
∫

R3,1×S

d4x d2θ Tr
(
F

(0,2)
S ∧Φ

)
, (3.28)

where O is a gauge invariant operator which is δ trivial. Here and throughout, ‘Tr’ generally

denotes a negative-definite invariant quadratic form on the Lie algebra of the gauge group

GS . As standard, we normalize ‘Tr’ such that for GS = SU(n) this form corresponds to the

trace in the fundamental representation. Also, d4x denotes the standard measure on R
3,1.

The organization of the rest of this subsection is as follows. We first derive the BPS

equations of motion for the fields of the partially twisted eight-dimensional theory. The

12Because we effectively consider cohomology with respect to the pair of supercharges δα̇, this topological

field theory is of the “balanced” type discussed in [30].
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massless spectrum of particles correspond to zero mode solutions on S in the presence

of a non-trivial supersymmetric background gauge field configuration. These zero modes

are represented by elements of an appropriate bundle valued Dolbeault cohomology group.

After this analysis, we show how the four-dimensional superpotential descends from the

partially twisted eight-dimensional theory. When S is a Hirzebruch or del Pezzo sur-

face, a general vanishing theorem for cohomology groups forbids any classical Yukawa

couplings. In subsequent sections we resolve this issue by treating a more general class of

F-theory compactifications.

3.3.1 BPS equations

To begin our analysis of four-dimensional supersymmetric vacua, we first present the BPS

equations of motion for the eight-dimensional fields of the partially twisted theory. In

a supersymmetric vacuum, the variations of all of the eight-dimensional fermions must

vanish. These conditions determine the BPS equations of motion. From the viewpoint of

the four-dimensional effective theory, these equations follow from the requirement that in a

supersymmetric vacuum the corresponding effective potential is both D- and F-flat. In this

subsection we present these conditions in the regime of large volume for S. Whereas the

D-flatness conditions will in general receive perturbative corrections away from the regime

of large volume, up to non-perturbative effects, the equations of motion derived from the

F-terms will remain unchanged.

The on-shell supersymmetry transformations of the eight-dimensional fields of the par-

tially twisted theory may be found in appendix B. From the variations of ηβ and ηβ̇, we see

that both the self-dual and anti-self-dual components of the curvature Fµν on R
3,1 must

vanish, so that

Fµν = 0 . (3.29)

From the variations of ψβ m, χβ mn and their conjugates, we also see that the mixed com-

ponents of the curvature along R
3,1 × S vanish,

Fµm = Fµm = 0 . (3.30)

Similarly, both ϕ and ϕ satisfy

Dµϕ = Dµϕ = 0 . (3.31)

The more interesting BPS equations involve the behavior of the gauge field and the

twisted scalars (ϕ ,ϕ) on S. First, from the variations of the fermions χα and χα̇ in (B.2),

we see that the components of the curvature on S of holomorphic/anti-holomorphic type

(2, 0) and (0, 2) both vanish,

F
(0,2)
S = F

(2,0)
S = 0 . (3.32)

Hence the (0, 1) component ∂A of the covariant derivative associated to the gauge field

on S endows the GS-bundle P with a holomorphic structure, since ∂2
A = F

(0,2)
S = 0. The

variation of the fermions in (B.2) also implies a holomorphy condition on ϕ as well as an

anti-holomorphy condition on ϕ,

∂Aϕ = ∂Aϕ = 0 . (3.33)
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Finally, from the variations of ηα and ηα̇, the (1, 1)-component of the curvature on S must

be related to the commutator of ϕ and ϕ as:

ω∧FS +
i

2
[ϕ ,ϕ] = 0 , (3.34)

where ω is the Kähler form on S.

Now, as the discussion in appendix C shows, the holomorphy conditions in (3.32)

and (3.33) are both associated to the vanishing of F-terms in the language of N = 1 su-

persymmetry. Neither of these F-term conditions involves the Kähler metric on S, and

we do not expect them to receive corrections, at least in perturbation theory. On the

other hand, the supersymmetry condition in (3.34) involves the vanishing of a D-term, and

this condition manifestly depends upon the Kähler metric on S. In general, the D-term

condition in (3.34) can therefore receive perturbative corrections as we integrate out mas-

sive Kaluza-Klein modes on S. However, if the volume of S is sufficiently large, we still

expect solutions to the classical D-term equation in (3.34) to determine supersymmetric

configurations for A, ϕ, and ϕ on S.

In much of this paper we shall primarily consider vacua such that ϕ = 0. In this case,

equations (3.32) and (3.34) correspond to the usual Hermitian Yang-Mills equations, which

are satisfied when the connection on P is anti-self-dual and the gauge field describes an

instanton on S.

We now discuss one immediate consequence of (3.34) which is especially helpful for

explicit computations with line bundles. Given a holomorphic gauge bundle T transforming

in a unitary representation T of some subgroup of GS which we denote by HS , we note

that the first Chern class of T admits a Chern-Weil representation as c1(T ) = i
2πTrT (FS).

When ϕ = 0, tracing over equation (3.34) in the representation T yields the condition:

ω∧c1(T ) = 0 ∈ H2(S; R) (3.35)

where ω denotes the Kähler form on S. In the special case where T is a line bundle and

ϕ = 0, equation (3.34) is equivalent to equation (3.35). Because c1(T ) is also quantized as

an element in the integral cohomology of S, equation (3.35) can only be solved for generic

ω if c1(T ) = 0. Conversely, if (3.35) is to admit a solution with c1(T ) 6= 0, we must assume

that ω is non-generic. Said differently, a supersymmetric gauge field configuration stabilizes

a Kähler modulus in the compactification. Some examples of supersymmetric line bundles

for S a Hirzebruch or del Pezzo surface are presented in appendix E.

Before closing this subsection, we note that the BPS equations in (3.32), (3.33),

and (3.34) have certainly been considered before. These equations on S are precisely13

the equations which arise from the topological twist of four-dimensional, N = 4 super-

symmetric Yang-Mills theory studied in [24] when that theory is specialized to a Kähler

four-manifold. Indeed, the partial twisting of the eight-dimensional theory we are consid-

ering is identical to the theory of [24] in the Kähler case.

13Due to the fact that we follow slightly different conventions from [24], a factor of ‘i/2’ appears in (3.34)

which is otherwise absent in [24].
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3.3.2 Bulk spectrum of massless particles

In direct analogy with heterotic Calabi-Yau compactifications, the massless spectrum of the

seven-brane theory wrapping S originates from a potentially non-trivial background gauge

field configuration on S with values in some subgroup HS . More precisely, the spectrum

in four dimensions is determined by bundle valued Dolbeault cohomology groups H i
∂

on

S where i = 0, 1, 2. This fact allows us to express the total massless spectrum in a given

representation of the unbroken gauge group in terms of a topological index formula. The

end result of this analysis is that the number of generations minus anti-generations in a

representation τ is:

nτ − nτ∗ = −
∫

S

c1(T )c1(S) (3.36)

where τ∗ denotes the dual representation to τ . Letting ΓS denote the maximal subgroup

of GS such that GS ⊃ ΓS × HS, in the above, T denotes a bundle transforming in a

representation T of HS such that the decomposition of the adjoint representation of GS to

ΓS ×HS contains the representation (τ, T ).

We now describe in further detail the massless spectrum. Our starting point is a super-

symmetric background configuration for the gauge field and the twisted scalars (ϕ,ϕ) on S.

For our applications, we shall primarily be interested in configurations with ϕ = 0 or more

generally configurations such that [ϕ,ϕ] = 0. Under these assumptions, the BPS equations

state that the principal GS-bundle P carries an anti-self-dual connection, corresponding

to an instanton on S. While the case of non-vanishing commutator for the internal four

dimensional N = 4 twisted theory on S has been studied in [24], it would be interesting to

interpret such vacua from the perspective of the seven-brane theory.14

The representation content of the particle spectrum is fixed by decomposing the adjoint

representation of GS into irreducible representations of ΓS ×HS:

ad(GS) ∼=
⊕

j

τj ⊗ Tj. (3.37)

A similar decomposition holds for the bundle ad(P ). In the obvious notation, we let Tj

denote the corresponding bundle which transforms as a representation Tj of HS .

Given an instanton on S with structure groupHS, the unbroken low energy gauge group

is given by the commutant subgroup of HS in GS . We note that in some cases such as when

HS contains semi-simple U(1) factors, ΓS corresponds to a proper subgroup of the four-

dimensional gauge group. For example, when GS = E6 and HS = U(1), the commutant

is G4d = SO(10) × U(1). On the other hand, in many cases this U(1) factor is anomalous

and therefore decouples from the low energy dynamics via the Green-Schwarz mechanism.

The massless spectrum on R
3,1 is given by zero mode solutions on S in the presence of

a potentially non-trivial background gauge field configuration. Because the partial twisting

on S automatically produces a covariantly constant supercurrent along S, each fermionic

zero mode possesses a bosonic counterpart. It therefore suffices to specify the spectrum of

14When this commutator does not vanish, it is tempting to speculate that the seven-brane experiences

an analogue of the Myers effect. We thank M. Wijnholt for suggesting this possibility.
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massless fermions in the four-dimensional effective theory. By inspection of the topological

action, in a background with ϕ = ϕ = 0, the equations of motion for the zero modes state

that the fermions ηα̇, ψα, and χα̇ in (3.18) are annihilated by the operators ∂A and ∂†A and

hence by the Laplacian △
∂

= ∂†A∂A + ∂A∂
†
A.

Via the standard Hodge isomorphism, we then obtain massless fermions on R
3,1 from

the following Dolbeault cohomology groups on S,

H0
∂

(
S , ad(P )

)
⊕ H1

∂

(
S , ad(P )

)
⊕ H2

∂

(
S , ad(P )

)
(3.38)

where the massless modes for ηα̇, ψα and χα̇ are associated to elements of H0
∂
, H1

∂
and

H2
∂
, respectively. Note that the natural even/odd grading on the cohomology correlates

with the chirality of the corresponding massless fermions on R
3,1. Labelling the represen-

tation content of a four-dimensional massless chiral field by an additional subscript, the

decomposition of ad(P ) in the analogue of equation (3.37) implies that the zero modes in

a representation τj of ΓS belong to the Tj bundle valued cohomology groups:

ηα̇τj
∈ H0

∂
(S,Tj) (3.39)

ψατj
∈ H1

∂
(S,Tj) (3.40)

χα̇τj
∈ H2

∂
(S,Tj). (3.41)

Further, when τj is a complex representation, the CPT conjugates of ηα̇τj
and χα̇τj

corre-

spond to chiral spinors in the complex conjugate representation τ∗j .

The same remarks hold for the fermions ηα, ψα̇, and χα in (3.19) which are related to

the zero modes described above by CPT conjugation. Because the zero-mode wavefunctions

for ηα, ψα̇, and χα are naturally anti-holomorphic on S, we identify those wavefunctions

with elements in the conjugate to (3.38):

H0
∂

(
S , ad(P )

)
⊕ H1

∂

(
S , ad(P )

)
⊕ H2

∂

(
S , ad(P )

)
. (3.42)

Because algebraic geometry typically deals with holomorphic objects, this is slightly

awkward. A holomorphic description for the zero modes described by (3.42) is obtained

using the isomorphism of vector spaces:15

Hp

∂

(
S , ad(P )

) ∼= Hp

∂

(
S , ad(P )

)
∗ . (3.43)

Physically, dualization corresponds to CPT conjugation. It is now immediate that

the chiral and anti-chiral spectrum for fields in a representation τj of ΓS is given by the

cohomology groups:

chiral: H0
∂

(
S ,T ∗

j

)
∗ ⊕H1

∂

(
S ,Tj

)
⊕H2

∂

(
S ,T ∗

j

)
∗ (3.44)

anti-chiral: H0
∂

(
S ,Tj

)
⊕H1

∂

(
S ,T ∗

j

)
∗ ⊕H2

∂

(
S ,Tj

)
. (3.45)

15This isomorphism is obtained as follows. We first observe that the Kähler metric on S and the invariant

form ‘Tr’ on the Lie algebra of GS together define the obvious inner product between elements in (3.38)

and (3.42). The p-form indices are contracted along S using the Kähler metric with all Lie algebra indices

contracted using the form ‘Tr’.
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Note in particular that the resulting spectrum is automatically CPT-invariant.

In principle, the spectrum is now determined entirely in terms of the Dolbeault coho-

mology groups of (3.44) for the bundle Tj associated with a representation τj which appear

in the decomposition of ad(P ). In general, these cohomology groups are not topological

objects because they depend holomorphically upon the complex structure moduli for S and

the vector bundles Tj and T ∗
j . Nevertheless, returning to (3.44), the analogous expression

for τ∗j interchanges all instances of Tj and T ∗
j . The number of massless four-dimensional

chiral fields in the representation τj minus the number in τ∗j is therefore:

nτj
− nτ∗

j
= h0(S,T ∗

j ) + h1(S,Tj) + h2(S,T ∗
j ) (3.46)

− (h0(S,Tj) + h1(S,T ∗
j ) + h2(S,Tj))

= χ(S,T ∗
j ) − χ(S,Tj) (3.47)

where as usual, hi = dimCH
i and the Euler character χ = h0 − h1 + h2 is a

topological invariant.

The explicit values of the above Euler characters are determined by an index formula:

χ(S,T ) =

∫

S

ch(T )Td(S) (3.48)

=

∫

S

(
rk(T )

12

[
c1(S)2 + c2(S)

]
+

1

2
c1(T )c1(S) +

1

2

[
c1(T )2 − 2c2(T )

])
. (3.49)

Because c1(T ) = −c1(T ∗) and c2(T ) = c2(T ∗), the number of chiral generations minus

anti-generations in a representation τj is:

nτj
− nτ∗

j
= −

∫

S

c1(Tj)c1(S). (3.50)

In the rigid case where S is either a Hirzebruch or del Pezzo surface, the number

of generations and anti-generations are each computed by a distinct index. This is a

consequence of the general vanishing theorem established in appendix E which shows that

for an arbitrary supersymmetric gauge field configuration, H2
∂
(S,Tj) = 0.16 Moreover,

when the holomorphic bundle Tj is irreducible and non-trivial (meaning Tj 6= OS), the

discussion in appendix E also shows that H0
∂
(S,Tj) = 0. Combining these facts yields:

nτj
= h1(S,Tj) = −χ(S,Tj) (3.51)

nτ∗

j
= h1(S,T ∗

j ) = −χ(S,T ∗
j ). (3.52)

3.3.3 Bulk Yukawa couplings

In this section we summarize the Yukawa couplings of the four-dimensional effective theory

for a seven-brane wrapping a general complex surface S. We also find that when S is either

a Hirzebruch or del Pezzo surface, all of the classical Yukawa couplings vanish.

16A related vanishing theorem is as follows. Note that because ϕ transforms as a section of KS ⊗ad(P ), a

zero mode solution for ϕ would imply that Hi

∂
(S, Kn

S ) is non-zero for some n > 0. Because KS is a strictly

negative line bundle, the Kodaira vanishing theorem establishes the absence of such solutions.
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When S is a general complex surface, the four-dimensional Yukawa couplings for the

zero mode solutions catalogued by (3.44) originate from the last term in the action of

equation (3.28). Labelling the zero mode solutions by α, β and γ, the Yukawa couplings

of the four-dimensional effective are therefore determined by the superpotential:

dαβγ = −
∫

S

hijkA
β,i ∧ Aγ,j ∧ Φα,k, (3.53)

where i, j, k and hijk respectively denote group theory indices and the structure constants

of GS associated with breaking GS to the subgroup ΓS ×HS.

Using the isomorphism of equation (3.43), a non-trivial Yukawa coupling between three

representations τ1, τ2, τ3 of ΓS corresponds to a tri-linear map:

H1
∂
(S,T1) ⊗H1

∂
(S,T2) ⊗H2

∂
(S,T ∗

3 )∗ → C. (3.54)

Note in particular that when S is either a Hirzebruch or del Pezzo surface, the vanishing

theorem used in the previous section to constrain the zero mode content also requires all

Yukawa couplings to vanish. This is unacceptable from the viewpoint of phenomenology.

In subsequent sections we shall rectify this deficiency by treating a more general class of

F-theory compactifications which couple the partially twisted theory to a six-dimensional

defect theory with matter localized along Riemann surfaces in S.

3.4 Bulk toy models

Using the above results, we now present some toy models which illustrate how both non-

chiral and chiral matter can originate from a supersymmetric gauge field configuration on

S. Initially, we take S to be a general del Pezzo surface. We first show that instanton

solutions on S with structure group SU(n) can generate a non-trivial massless spectrum in

four dimensions. Nevertheless, we find that in such cases the resulting spectrum is always

non-chiral because the corresponding instanton solutions have vanishing first Chern class.

We next present an SO(10) model with three chiral generations transforming in the 16

spinor representation.

To generate zero modes on S which can descend to massless fields in four dimensions,

we introduce an instanton solution with structure group SU(n) ⊂ GS on S with instan-

ton number k. As an example, suppose that the decomposition of the adjoint of GS to

ΓS × SU(n) contains the representation (τ, n). Assuming that a non-trivial instanton so-

lution on S exists, the resulting number of massless chiral four-dimensional fields in the

representation τ is:

nτ = k − n. (3.55)

The existence of zero mode solutions thus imposes the condition k ≥ n.

While the explicit parameterization of such an instanton solution is quite non-trivial,

it is enough to check that the moduli space Mk of solutions with instanton number k is

non-trivial. The dimension of Mk is:

dimMk = 4kn− (n2 − 1)
(χ+ σ)

2
(3.56)
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where χ and σ respectively denote the Euler character and signature of S. When S is a

del Pezzo surface, this becomes:

dimMk = 4kn− 2(n2 − 1). (3.57)

The condition nτ ≥ 0 implies:

dimMk = 4kn − 2(n2 − 1) ≥ 2n2 + 2 > 0 (3.58)

so that there exists a moduli space of solutions in this case which can generate massless

chiral four-dimensional fields in the representation τ of ΓS. A similar analysis shows that

when τ is a complex representation, the number of massless chiral four-dimensional fields

in the complex conjugate representation τ∗ precisely matches the number transforming in

τ , so that the resulting spectrum is non-chiral.

In fact, we now show that for arbitrary S, an SU(n) instanton solution cannot gen-

erate a chiral spectrum in four dimensions. Indeed, because the adjoint of GS is a real

representation, the decomposition to ΓS × SU(n) will contain the representations (τj , Tj)

and (τ∗j , T
∗
j ) when the representation τj is complex. Next recall from equation (3.36) that

the net number of generations in τj minus the number in τ∗j is −c1(S) · c1(Tj). Because all

unitary representations of SU(n) are traceless, c1(Tj) vanishes.

We now present an explicit toy model with chiral matter spectrum induced by a su-

persymmetric gauge field configuration such that tensor powers of the gauge bundle have

non-zero first Chern class. To this end, we take a seven-brane wrapping the Hirzebruch

surface S = F1 with bulk gauge group GS = E6. By turning on an appropriate super-

symmetric U(1) gauge field configuration defined by a line bundle L on S, E6 will break to

SO(10) ×U(1). To determine the chiral spectrum of this theory, we note that the adjoint

of E6 decomposes as:

E6 ⊃ SO(10) × U(1) (3.59)

78 → 450 + 10 + 16−3 + 16+3 (3.60)

where we have chosen an integral normalization of the U(1) charge. Invoking the van-

ishing theorem proved in appendix E, the zero modes of the Dolbeault operator for each

representation are classified by:

16−3 ∈ H1
∂
(S,L−3) (3.61)

16+3 ∈ H1
∂
(S,L+3). (3.62)

All supersymmetric line bundles of the Hirzebruch surfaces are classified in appendix E.

The result is that a line bundle is supersymmetric for some Kähler class if and only if there

exist integers a and b such that ab < 0 so that L is given by:

L = OF1(af + bσ), (3.63)
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with f and σ as in appendix A. Using the fact that c1(F1) = 3f + 2σ, the number of

four-dimensional massless fields in the 16 now follows from equations (3.49) and (3.51):

n16 = −
(

rk(L−3) +
1

2
c1(L−3) · (3f + 2σ) +

1

2
c1(L−3) · c1(L−3)

)
(3.64)

= −
(

1 − 3

2
(2a+ b) +

9

2

(
2ab− b2

))
(3.65)

where in the above we have used the fact that the Todd genus of S is unity for a Hirzebruch

surface. A similar computation for the number of 16’s yields:

n
16

= −
(

1 +
3

2
(2a+ b) +

9

2

(
2ab− b2

))
. (3.66)

It is amusing that the net number of 16’s is always a multiple of three:

n16 − n
16

= 3 (2a+ b) (3.67)

so that when a = 1 and b = −1, we have precisely three generations in the 16 of SO(10).

Let us now explicitly check that the zero mode content contains no contribution from

H0
∂

and H2
∂
. Because f and σ generate the cone of all effective classes in H2(S,Z), when a

and b have opposite signs, any purported global section of L will have a pole along either σ

or f . This implies H0
∂
(S,Ln) is trivial for all n a non-trivial integer. Moreover, by Serre

duality we have:

H2
∂
(S,OF1(naf + nbσ) ≃ H0

∂
(S,OF1(−(na+ 3)f − (nb+ 2)σ)∗. (3.68)

In order for H2
∂
(S,Ln) to be non-trivial, both na and nb must be negative. Because this

is not possible, it follows that the massless spectrum is completely characterized by H1
∂
.

4. Intersecting seven-branes in F-theory

So far, we have analyzed the low energy effective description for F-theory on a class of

very special elliptic Calabi-Yau fourfolds X given by canonical ADE singularities over a

smooth, compact Kähler surface S. We began by considering such models not because

they are particularly realistic, but because they are particularly simple: F-theory on the

local Calabi-Yau fourfold X is described at low energies by the partially twisted Yang-Mills

theory which lives on the worldvolume of the seven-brane wrapping R
3,1 × S.

In this section, our goal is to study the low-energy effective description for F -theory

on a much more general class of local elliptic Calabi-Yau fourfolds. From a physical per-

spective, these new F-theory backgrounds will contain intersecting seven-branes of various

ADE-types. From a mathematical perspective, we will allow the singular locus ∆ ⊂ B

of the elliptic fibration of X to be reducible, so that ∆ consists of several components of

colliding singularities in the threefold B.

For the sake of concreteness, we start in section 4.1 by presenting simple local models

for elliptic Calabi-Yau fourfolds associated to intersecting seven-branes in F-theory. Of
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course, as noted long ago [22] in the context of F-theory on elliptic Calabi-Yau threefolds,

when two seven-branes intersect along a common six-dimensional subspace, one finds ad-

ditional light degrees of freedom localized at the intersection and charged under the world-

volume gauge group carried by each seven-brane, analogous to the bifundamental matter

that arises at the intersection of ordinary D-branes. Somewhat surprisingly, the effective

description of this light charged matter seems never to have been worked out for N = 1

supersymmetric F-theory models.

To remedy that gap, we consider in section 4.2 the case that our original seven-brane

wrapping the surface S intersects another seven-brane wrapping a surface S′ transversely

along a smooth complex curve Σ = S ∩ S′. As we explain, the effective dynamics of the

light, charged degrees of freedom living on the intersection R
3,1 × Σ are captured by a

partially twisted six-dimensional defect theory which is jointly coupled to the bulk, eight-

dimensional Yang-Mills theories living on the two seven-branes. If S′ is non-compact, as

will often be the case in our local models, then the fields in the twisted Yang-Mills theory

on R
3,1 × S′ are non-dynamical background fields, and we simply consider a twisted defect

theory on R
3,1 × Σ coupled to the twisted Yang-Mills theory on R

3,1 × S introduced in

section 3.

We next present evidence that this more involved theory accurately describes the

corresponding compactification in F-theory. To this end, in section 4.3 we match the

additional moduli of the defect theory on Σ to the moduli of F-theory on X. This match

is quite interesting, since it relies upon the interpretation of the defect theory on Σ as

inducing a surface operator for the bulk gauge theory on S.

Having argued that the partially twisted theory does indeed describe a more gen-

ral class of F-theory compactifications, in section 4.4 we study the resulting spectrum

of massless charged matter and effective superpotential in four dimensions. Once again,

the spectrum of massless charged matter is determined by certain Dolbeault cohomology

groups on Σ, and the net chirality in four dimensions is given by a corresponding index.

We also find generically non-zero Yukawa couplings involving two chiral superfields derived

from Σ and one from the bulk theory on S.

4.1 Colliding singularities and intersecting seven-branes

In this section we present geometries for a more general class of F-theory vacua which

contain intersecting seven-branes. To describe these intersections geometrically in terms of

colliding singularities, we begin by generalizing the local model for the elliptically-fibered

Calabi-Yau fourfold X given in section 3.1.

Once again, X will be the total space of an elliptic K3-fibration over the compact

surface S,

Y −→ Xyπ

S

, (4.1)

where Y remains a local, elliptically-fibered K3 given as a hypersurface in C
3. However,

we now allow the singularities in Y to vary from point to point over S. At points where

the generic singularity on S enhances, two seven-branes intersect.
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Intersecting seven-branes of A-type. As a first example, we exhibit a local model for

X that describes a compact 7-brane of type An which wraps S and intersects another, non-

compact seven-brane of type Am along an effective divisor Σ ⊂ S. The fibering of Y over

S is necessarily more complicated in this situation, so we generalize (3.5) by allowing the

affine coordinates (x, y, z) on C
3 to transform over S as sections of the rank three bundle:

V = L⊕ L⊕KS . (4.2)

At the moment, L is an arbitrary line bundle over S, and the motivation behind this

particular ansatz for V will be clear momentarily.

We now take Y to be the hypersurface in V given by

y2 = x2 + αm+1 zn+1 , α ∈ H0
∂

(
S,OS(Σ)

)
. (4.3)

Here α is a holomorphic section of the line bundle OS(Σ) associated to the divisor Σ,

along which we assume α vanishes to first-order. The equation (4.3) is homogeneous if we

take L2 = OS

(
(m+ 1)Σ

)
⊗K

(n+1)
S . Note that the holomorphic two-form (1/y) dx∧dz on

Y automatically transforms as a section of KS , so that X is Calabi-Yau.17

Away from Σ, α is non-vanishing, so (4.3) describes a generic An singularity along S,

identified as the zero-section in V . Therefore we have a seven-brane of type An wrapping S.

On the other hand, away from S itself, the normal coordinate z to S ⊂ B is non-vanishing.

Because α vanishes to first-order along Σ, we still find a generic Am singularity in the fiber

of KS over Σ. Thus we also have a seven-brane of type Am extending in the fiber over Σ.

Over Σ ⊂ S, the Am and An singularities collide and enhance to an Am+n+1 singularity.

That is, we have a transversal intesection of one seven-brane carrying the worldvolume

gauge group SU(n+ 1) with another seven-brane carrying the worldvolume gauge group

SU(m+ 1). As usual, we expect to find bifundamental matter localized along Σ and

transforming under SU(n+ 1) × SU(m+ 1) as

(
n + 1 ,m + 1

)
⊕
(
n + 1 ,m + 1

)
. (4.4)

The local model for X determined by (4.3) is only the simplest in a wide class of

examples. For instance, given holomorphic sections

tk ∈ H0
∂

(
S,KS

)
, k = 1, . . . , n+ 1 ,

n+1∑

k=1

tk = 0 ,

uℓ ∈ H0
∂

(
S,OS(Σ)

)
, ℓ = 1, . . . ,m+ 1 ,

m+1∑

ℓ=1

uℓ = 0 , (4.5)

we can deform (4.3) to

y2 = x2 +

m+1∏

ℓ=1

(α + uℓ)

n+1∏

k=1

(z + tk) . (4.6)

17As in (3.8), the potentially half-integral nature of L is an artifact associated to our particular

parametrization for the An singularity. If we instead take xy = αm+1zn+1, no square-roots are necessary.

– 29 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
8

The ‘unfolding’ of the respective An and Am singularities in equation (4.6) can be inter-

preted physically as a separation of the seven-branes in the original stacks wrapping S

and the fiber over Σ. Indeed, equation (4.6) describes seven-branes which now wrap the

divisors in the threefold B given by z + tk = 0 and α+ uℓ = 0.

Of course, if the canonical bundle KS has no holomorphic sections, or if α is the only

holomorphic section of OS(Σ) up to scale, then the local model for X in (4.3) cannot be

deformed as in (4.6). However, we can still generalize (4.6) as follows.

To simplify the notation, let us focus on the case m = 0, for which we expand (4.6) as

y2 = x2 + α

n+1∏

k=1

(z + tk) ,

= x2 + α
[
zn+1 + s2 z

n−1 + . . . + sn+1

]
. (4.7)

where sk denotes the elementary symmetric polynomial of degree k in the n+ 1 variables

t1, . . . , tn+1. If m = 0 as in (4.7), then the hypersurface Y is actually non-singular along

the locus where α vanishes, but the corresponding elliptic fibration has a singular fiber of

Kodaira type I1. A singularity of type I1 is the generic singularity in an elliptic fibration,

and corresponds to a seven-brane with worldvolume gauge group U(1).

Each coefficient α · sk in (4.7) transforms as a section of the line bundle OS(Σ)⊗Kk
S .

Even if KS itself has no holomorphic sections, such as occurs when KS is strictly negative

(the del Pezzo case), the tensor product OS(Σ) ⊗Kk
S might admit holomorphic sections,

depending upon our choices for Σ and k. Thus, we can further generalize (4.7) by taking

y2 = x2 + α zn+1 + α̂2 z
n−1 + . . . + α̂n+1 ,

α̂k ∈ H0
∂

(
S ,OS(Σ) ⊗Kk

S

)
(4.8)

where the α̂k are the generalizations of the deformation parameters αk given in (3.25) in

the special case where α transforms as a section of a trivial bundle. As we discuss in

subsection 4.3, the low-energy physics of F-theory on the local elliptic Calabi-Yau fourfold

determined by (4.8) turns out to be quite rich, despite the fact that (4.8) describes the

unfolding of only an An singularity. In fact, from equation (4.7), we notice that the Calabi-

Yau geometry remains regular even when the si have first order poles along the locus α = 0.

We will interpret this effect as the coupling of certain light modes living on Σ which source

the bulk field ϕ. In particular, the residue of ϕ along the α = 0 pole will be identified with

a condensate of these modes on Σ.

Intersecting seven-branes of arbitrary ADE-type. Since this paper is primarily

concerned with exceptional singularities in F-theory, we must also consider intersecting

seven-branes of arbitrary ADE-type. By analogy to the unfolding of the An singularity

over S in (4.8), we thus consider local models for X which are based on the unfolding of

the general ADE-singularity.

In all cases, the essential feature of these models is that the coefficients corresponding

to the analogues of the α̂k in equation (4.8) are also holomorphic sections of appropriate

– 30 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
8

line bundles over S. As these coefficients vary over S, the singularity along S can enhance,

at which point another seven-brane intersects the seven-brane wrapping S.

We now present our local models for X which are based on the general unfolding of

the D- and E-type singularities. Again, some important numerology will be at play in the

various line bundles which appear in the constructions below.

In the case that X is associated to an unfolding of a D-type singularity, we take the

coordinates (x, y, z) on Y to transform as sections of the rank three bundle

V = (L⊗K−1
S ) ⊕ L⊕K2

S . (4.9)

Here L is an arbitrary line bundle over S. This ansatz for V has been taken so that the

equation for the Dn singularity will be homogeneous in (x, y, z) and so that the Calabi-Yau

condition on X will be satisfied.

With this ansatz for V , we then consider an equation for the hypersurface Y of the form

Dn : y2 = −x2 z + α2 zn−1 , α ∈ H0
∂

(
S, L⊗K

−(n−1)
S

)
. (4.10)

In this equation, α is an arbitrary holomorphic section of L⊗K
−(n−1)
S which we introduce

as part of the defining data for the local Calabi-Yau fourfold X. If L is sufficiently positive,

then a non-trivial α always exists. Of course, we have made a special choice in assuming

that α appears quadratically in (4.10). This choice is related to a ‘splitness’ condition

for the singularity discussed in [31]. We will motivate our choice from the perspective of

topological field theory later, but for now it is simply part of the model for X.

As in the preceding discussion of intersecting An singularities, we let Σ be the effective

divisor in S along which α vanishes, so that

OS(Σ) = L⊗K
−(n−1)
S . (4.11)

Away from Σ, the equation in (4.10) thus describes a Dn singularity over S. In precise

analogy to (4.8), we now unfold the Dn singularity in (4.10) as

Dn : y2 = −x2 z + α2 zn−1 +
n−1∑

k=1

δ̂2k z
n−k−1 − 2 γ̂n x , (4.12)

where:

δ̂2k ∈ H0
∂

(
S, OS(2Σ) ⊗K2k

S

)
, γ̂n ∈ H0

∂

(
S, OS(Σ) ⊗Kn

S

)
. (4.13)

Like α, the sections δ̂2k and γ̂n are parameters which define the local model for X, and the

line bundles appearing in (4.13) are just determined by homogeneity of (4.12).

Similarly, for the E-type singularities, we take (x, y, z) to transform in the rank

three bundle:

V = L2 ⊕ L3 ⊕ (L⊗KS) , (4.14)

where L is again an arbitrary line bundle on S. As before, this ansatz for V is fixed by

homogeneity and the Calabi-Yau condition on X.
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To describe a generic E6,7,8 singularity over S, we consider the hypersurface equa-

tions for Y ,

E6: y2 = x3 + α2z4 α ∈ H0
∂

(
S,L⊗K−2

S

)
(4.15)

E7: y2 = −x3 + 16αxz3 α ∈ H0
∂

(
S,L⊗K−3

S

)
(4.16)

E8: y2 = x3 − αz5 α ∈ H0
∂

(
S,L⊗K−5

S

)
. (4.17)

As explained previously, the particular choice of numerical coefficients have been chosen for

ease of comparison with the results of [28]. In each case, away from the divisor Σ on which

α vanishes, Y has an exceptional singularity along S. In the case of the E6 singularity, we

have again made a special choice associated to the quadratic appearance of α in (4.15) and

related to the splitness condition in [31].

We now unfold each exceptional singularity as:

E6 : y2 = x3 + α2z4 + ε̂2 xz
2 + ε̂5 xz + ε̂6 z

2 + ε̂8 x + ε̂9 z + ε̂12 ,

E7 : y2 = −x3 + 16αx z3 + ε̂2 x
2z + ε̂6 x

2 + ε̂8 xz+

+ ε̂10 z
3 + ε̂12 x + ε̂14z + ε̂18 ,

E8 : y2 = x3 − αz5 + ε̂2 xz
3 + ε̂8 xz

2 + ε̂12 z
3 + ε̂14 xz+

+ ε̂18 z
2 + ε̂20 x + ε̂24 z + ε̂30 . (4.18)

Here the coefficients ε̂k transform as holomorphic sections of various line bundles which

are determined by the homogeneity of the equations in (4.18). We collect the bundle

assignments for these deformation parameters in the following tables:

E6

ε̂2 ∈ OS(2Σ) ⊗K2
S ε̂5 ∈ OS(3Σ) ⊗K5

S ε̂6 ∈ OS(4Σ) ⊗K6
S

ε̂8 ∈ OS(4Σ) ⊗K8
S ε̂9 ∈ OS(5Σ) ⊗K9

S ε̂12 ∈ OS(6Σ) ⊗K12
S

(4.19)

E7

ε̂2 ∈ OS(Σ) ⊗K2
S ε̂6 ∈ OS(2Σ) ⊗K6

S ε̂8 ∈ OS(3Σ) ⊗K8
S

ε̂10 ∈ OS(3Σ) ⊗K10
S ε̂12 ∈ OS(4Σ) ⊗K12

S ε̂14 ∈ OS(5Σ) ⊗K14
S

ε̂18 ∈ OS(6Σ) ⊗K18
S

(4.20)

E8

ε̂2 ∈ OS(Σ) ⊗K2
S ε̂8 ∈ OS(2Σ) ⊗K8

S ε̂12 ∈ OS(3Σ) ⊗K12
S

ε̂14 ∈ OS(3Σ) ⊗K14
S ε̂18 ∈ OS(3Σ) ⊗K18

S ε̂20 ∈ OS(4Σ) ⊗K20
S

ε̂24 ∈ OS(5Σ) ⊗K24
S ε̂30 ∈ OS(6Σ) ⊗K30

S

(4.21)

A non-trivial feature of the above bundle assignments is that the power of KS appearing in

each entry again precisely matches to the degrees of the primitive Casimir invariant. The

discrepancy by an overall factor of OS(nΣ) anticipates the beautiful match we shall find

between condensates of fields localized on Σ and the geometric unfolding of the singularity.

The class of local, elliptic Calabi-Yau fourfolds described by equations (4.8), (4.12),

and (4.18) is quite broad, and serves as a significant extension over the very restricted
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class of models studied in section 3. Given such a local Calabi-Yau fourfold X, one of

our primary goals in the rest of the paper will be to determine the low-energy effective

description for F-theory compactified on X.

4.2 Topological field theory on a defect

The local geometries for the elliptically-fibered Calabi-Yau fourfold X introduced in sec-

tion 4.1 correspond in F-theory to rather complicated configurations of intersecting seven-

branes inside the threefold B sitting at the base of X. So if we wish to analyze F-theory

on X, we clearly need to know something about the low-energy effective description for

intersecting seven-branes in F-theory.

For concreteness, let us consider two seven-branes wrapping smooth complex surfaces S

and S′ in B such that S and S′ intersect transversely along a complex curve Σ = S ∩ S′. In

general, Σ might be reducible and consist of several components which themselves intersect

at points inside S. However, to keep matters simple, we suppose that Σ is an irreducible,

smooth curve. In section 5, we consider what happens when Σ becomes reducible.

As explained in section 3, on each of S and S′ is a twisted Yang-Mills theory which cap-

tures the effective dynamics for the low-energy degrees of freedom living on a seven-brane

in F-theory. But just as for ordinary D7-branes, we now expect additional light degrees

of freedom to be localized along the subspace R
3,1 × Σ where the seven-branes wrapping

S and S′ intersect. These light degrees of freedom on R
3,1 × Σ are then described by an

effective defect theory coupled to the bulk Yang-Mills theories on R
3,1 × S and R

3,1 × S′.

If the defect theory on R3,1 × Σ is to preserve N = 1 supersymmetry in four dimensions,

the defect theory must be twisted along Σ for the same reason that the bulk Yang-Mills

theory on R
3,1 × S is twisted along S. Though the corresponding defect theories that live

on the intersections of D-branes in Minkowski and Anti-de Sitter space have been studied

for example in [32 – 34], little attention has been paid to their twisted relatives. For this

reason, we now establish some basic facts about the structure of the partially twisted theory

on R
3,1 × Σ.

4.2.1 Topological twist on Σ

We first identify the light defect degrees of freedom that propagate on R
3,1 × Σ. The

simplest case to consider is Σ = C, corresponding to F-theory compactified to R
5,1 on an

elliptically-fibered Calabi-Yau threefold. Such an F-theory background preserves N = 2 su-

persymmetry in four dimensions, and the massless charged matter arising from intersecting

seven-branes in that situation was analyzed in [22].

To recall the result of [22], we suppose that the seven-brane wrapping S carries a

worldvolume gauge group GS , and the seven-brane wrapping S′ carries a worldvolume

gauge group GS′ . Both GS and GS′ are simply-laced Lie groups associated to ADE sin-

gularities along S and S′. We also allow the possibility that either GS or GS′ is U(1),

corresponding to a Kodaira fiber of type I1 over S or S′. At the intersection of S and S′

over Σ, the singularities generically enhance to a new singularity associated to a simply-

laced Lie group GΣ, where

GS ×GS′ ⊂ GΣ . (4.22)
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According to [22], a massless hypermultiplet charged under GS ×GS′ then propagates

along the seven-brane intersection.

In the case GS = SU(n+ 1), GS′ = SU(m+ 1), and GΣ = SU(m+ n+ 2), the charged

hypermultiplet decomposes into a pair of N = 1 chiral multiplets which transform as bi-

fundamentals of GS ×GS′ . To extend the notion of “bifundamental” matter to the general

ADE setting, we decompose the adjoint representation of GΣ under GS ×GS′ as

ad(GΣ) = ad(GS) ⊕ ad(GS′) ⊕



⊕

j

Uj ⊗ U ′
j


 . (4.23)

Here Uj and U ′
j are irreducible representations of GS and GS′ , and ‘j’ is a dummy in-

dex running over whatever summands appear in the decomposition above. Under the

decomposition of the hypermultiplet into N = 1 chiral multiplets, the light “bifundamen-

tal” matter localized along Σ then transforms in the representation of GS ×GS′ given by

the non-adjoint summand of (4.23), namely
⊕

j

Uj ⊗ U ′
j . (4.24)

If Σ is not C but rather a compact complex curve, we apply the adiabatic argument as

in section 3 to conclude that the massless fields which propagate on R
3,1 × Σ correspond

to a twisted version of the charged hypermultiplet propagating on R
5,1. Once again, the

requirement of N = 1 supersymmetry in four dimensions leaves us with no choice about

how to twist the hypermultiplet.

To specify the twist, we recall that the untwisted hypermultiplet on R
5,1 contains a

pair of complex bosons (σ , σc) and a negative-chirality18 Weyl fermion, which transforms

in the 4′ of SO(5, 1). Under the gauge group GS ×GS′ in (4.22), we take the bosons and

fermions in the hypermultiplet to transform in the representation U ⊗ U ′, corresponding to

one of the summands in (4.24). If all kinetic terms are canonical, the hypermultiplet also

respects a global SU(2)R symmetry under which (σ , σc) transform as a doublet, and the

Weyl fermion transforms as a singlet. Finally, the supersymmetry generator ǫ transforms

under SO(5, 1) × SU(2)R in the representation 4′ ⊗ 2.19

To twist the hypermultiplet on Σ, we reduce the global SO(5, 1) symmetry to

SO(3, 1) × U(1), where the U(1) factor is to be identified with the structure group of

the tangent bundle on Σ. Under the reduction to SO(3, 1) × U(1), the negative-chirality

spinor of SO(5, 1) decomposes as

4′ 7−→
(
2 ,1 ,−1

2

)
⊕
(
1 ,2 ,+

1

2

)
. (4.25)

To specify the bundle assignments of the twisted theory, note that the 2 of SU(2)R
decomposes to the Cartan U(1)R subgroup as:

2 7−→ 1+1 ⊕ 1−1 . (4.26)

18Our choice of chirality here may seem a bit strange, but it makes certain conventions about holomorphy

more natural later.
19The generator ǫ also obeys a reality condition which will play no role in the discussion to follow.
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The subscripts above indicate the charges under the generator R of U(1)R. Equivalently,

the distinguished U(1)R subgroup of SU(2)R can be identified with the R-symmetry used

to partially twist the bulk eight-dimensional Yang-Mills theory described in section 3.

The twist of the hypermultiplet is now specified by a homomorphism from U(1)R to the

U(1) factor in SO(3, 1) × U(1). Let J be the generator of the U(1) factor in SO(3, 1) × U(1)

normalized according to (4.25). In order to preserve N = 1 supersymmetry on R
3,1, half

of the original eight supersymmetries generated by ǫ must transform as scalars on Σ once

we twist. As one can check, this requirement implies that the generator Jtop of the twisted

U(1) must be

Jtop = J ± 1

2
R . (4.27)

Either choice of sign above leads to an isomorphic twist, so we take Jtop = J − 1
2R without

loss of generality.

Because the fermions in the hypermultiplet transform trivially under SU(2)R, the twist

by U(1)R ⊂ SU(2)R does not alter their geometric interpretation on Σ. According to (4.25),

the twisted hypermultiplet on R
3,1 × Σ therefore contains fermions (λα , λ

c
α̇) transforming

as spinors on the curve Σ,

λα section of K
1/2
Σ ⊗ U ⊗ U ′ ,

λc
α̇ section of K

1/2
Σ ⊗ U ⊗ U ′ . (4.28)

In (4.28), K
1/2
Σ denotes a square-root of the canonical bundle KΣ on Σ. In general, the

choice of a square-root for KΣ is not unique. If Σ has genus g, then Σ admits 22g distinct

spin structures, and we must identify precisely which one we pick to define K
1/2
Σ . As we

explain in section 4.2.3, Σ inherits a distinguished spin structure from its embedding in the

surface S (or equally well from its embedding in S′), and the distinguished spin structure

defines K
1/2
Σ . Also, U and U ′ are vector bundles on Σ associated to the representations

U and U ′. As one expects, U and U ′ are determined by the restriction to Σ of principal

bundles P and P ′ over the respective surfaces S and S′.

Even though the fermions in the hypermultiplet are not affected by the twist on Σ,

the bosons in the hypermultiplet are. Under the generator Jtop, σ and σc carry respective

charges ∓1
2 , inherited from their charges under U(1)R. As a result, σ and σc also transform

as spinors on Σ,

σ section of K
1/2
Σ ⊗ U ⊗ U ′ ,

σc section of K
1/2
Σ ⊗ U ⊗ U ′ . (4.29)

Finally, as is often useful when we discuss the hypermultiplet in the language of N = 1

supersymmetry, we introduce the complex boson σc and the fermion λc
α which are the CPT

conjugates of σc and λc
α̇,

σc section of K
1/2
Σ ⊗ U∗ ⊗ (U ′)∗ ,

λc
α section of K

1/2
Σ ⊗ U∗ ⊗ (U ′)∗ . (4.30)
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Here U∗ and (U ′)∗ are the bundles associated to the dual representations U∗ and (U ′)∗. Of

course, if U ⊗ U ′ appears as a summand in (4.24), then so too does U∗ ⊗ (U ′)∗, since the

representation in (4.24) is necessarily real.

4.2.2 On the supersymmetric defect action

We are still left to determine the supersymmetric action for the twisted defect theory on

R
3,1 × S. In particular, we need to consider how the defect fields on Σ couple to the bulk

Yang-Mills fields on S and S′. As will be clear, supersymmetry and gauge-invariance leave

us little choice as to how the coupling can be done.

Like the partially twisted Yang-Mills theory discussed in section 3, the twisted fields

in the hypermultiplet on R
3,1 × Σ naturally arrange themselves into the standard rep-

resentations of the N = 1 supersymmetry algebra on R
3,1. Thus from the field content

in (4.28), (4.29), and (4.30), we clearly obtain N = 1 chiral multiplets

(σ, λα) , (σc, λc
α) , (4.31)

along with the CPT-conjugate N = 1 anti-chiral multiplets, which will not play a role in

the following.

We are now in a slightly unusual situation. In the most common topological field the-

ories, the on-shell supersymmetries of the ten-dimensional Yang-Mills theory immediately

determine the on-shell supersymmetries of the lower-dimensional twisted theory. From the

on-shell twisted supersymmetries, one then tries to write an appropriately twisted version

of the super Yang-Mills action.

But in the case at hand, we do not know a priori how the on-shell supersymmetries

should act on the chiral multiplets in (4.31), since we do not yet know precisely how the

defect theory will couple to the bulk Yang-Mills theories on S and S′. However, we do

have an (essentially) off-shell formulation for the N = 1 supersymmetry algebra in our

problem. Inverting the usual order of analysis, in appendix D we therefore construct the

most general supersymmetric off-shell action for the six-dimensional defect theory. We then

integrate out auxiliary fields to determine the on-shell supersymmetry transformations and

associated BPS equations for the system. The details of the analysis in appendix D are

mostly unimportant, but the analysis does yield two important results.

The defect superpotential. First, the off-shell defect action, including couplings to the

bulk Yang-Mills fields on S and S′, can be written concisely in superspace as

IΣ =

∫

R3,1×Σ

d4x d2θ O +

∫

R3,1×Σ

d4x d2θ WΣ , (4.32)

where

WΣ =
〈
Λc , ∂A+A′Λ

〉
. (4.33)

The notation of the above expression is explained below. In (4.32), O is a gauge-invariant

operator whose particular form does not much matter once we restrict attention to the

cohomology of Qα̇. As we demonstrate in appendix D, the terms in IΣ derived from O are
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the standard kinetic terms on R
3,1 for the defect fields, along with couplings conjugate to

those derived from the superpotential in (4.32).

The superpotential WΣ is clearly the object of interest in IΣ. To explain our notation,

Λ and Λc are chiral superfields associated to the chiral multiplets in (4.31), so that

Λ = σ +
√

2θλ + θθK + . . . ,

Λc = σc +
√

2θλc + θθKc + . . . . (4.34)

Here K and Kc are auxiliary bosonic fields that transform like σ and σc as sections of

K
1/2
Σ ⊗U ⊗U ′ and K

1/2
Σ ⊗U∗ ⊗ (U ′)∗, and the ‘· · · ’ indicate additional terms involving θα̇

which do not play a role in our discussion of WΣ. The pairing 〈 · , · 〉 between Λ and Λc

in WΣ is the canonical pairing between sections of U ⊗ U ′ and the dual. Recall that from

the four-dimensional perspective, the (0, 1) component of the gauge field along S appears

as the lowest bosonic component of the chiral superfield described in section 3,

Am = Am +
√

2θψm + θθGm + . . . , (4.35)

where Gm is an auxiliary bosonic field transforming on S as a section of Ω1
S ⊗ ad(P ). Finally,

the covariant derivative ∂A+A′ appearing in (4.32) is meant to be interpreted literally in

superspace as

∂A+A′ = ∂ + A + A′ ,

= ∂A+A′ +
√

2θ
(
ψ + ψ′

)
+ θθ

(
G + G′

)
+ . . . . (4.36)

Given (4.34), (4.35), and (4.36), we can immediately work out the component expansion

for the superpotential in IΣ. However, before we do so, let us note that WΣ is quite

special. Due to the twisting of Λ and Λc as spinors on Σ, the superpotential in (4.33) itself

transforms as a differential form of type (1, 1) on Σ. Hence WΣ can be naturally integrated

over Σ, without reference to a metric on the curve. As a result, when we compactify the

defect theory to R
3,1 in section 4.4, WΣ leads immediately to effective Yukawa couplings

in four dimensions which involve only holomorphic data on Σ.

BPS equations. The second important result obtained in appendix D is a derivation of

the conditions for unbroken supersymmetry when the defect theory on R
3,1 × Σ is coupled

to the bulk Yang-Mills theories on R
3,1 × S and R

3,1 × S′ via the action in (4.32).

From the perspective of the present paper, the most interesting BPS equations are the

F-term equations associated to the auxiliary fields which enter WΣ. Explicitly, we expand

in components
∫

R3,1×Σ

d4x d2θ WΣ =

∫

R3,1×Σ

d4x
[ 〈

Kc, ∂A+A′σ
〉

+
〈
σc, ∂A+A′K

〉
+
〈
σc, (G + G′) · σ

〉

−
〈
λc, ∂A+A′λ

〉
−
〈
σc, (ψ+ψ′) · λ

〉
−
〈
λc, (ψ + ψ′) · σ

〉 ]
. (4.37)

Here in expressions such as G · σ, we indicate the linear action by elements in the Lie

algebra of the group GS on the representation U , and similarly for the action of GS′ on

the representation U ′.
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Because K and Kc are the auxiliary bosonic fields appearing in the defect chiral su-

perfields Λ and Λc, the linear terms involving K and Kc in (4.37) immediately imply the

F-term supersymmetry conditions

∂A+A′ σ = ∂A+A′ σc = 0 . (4.38)

Thus σ and σc must be holomorphic as sections of the respective bundles K
1/2
Σ ⊗ U ⊗ U ′

and K
1/2
Σ ⊗ U∗ ⊗ (U ′)∗ on Σ.

The essentially new ingredient in (4.37) is the coupling of the auxiliary bulk fields G
and G′ appearing in A and A′ to the defect fields σ and σc. In the absence of the defect, the

F-term supersymmetry condition associated to G (and similarly to G′) merely states that

∂Aϕ = 0 , (4.39)

so that ϕ is holomorphic as a section of KS ⊗ ad(P ) on S.

However, in the presence of the defect, the linear coupling to G in equation (4.37)

induces a source term for the BPS equation in (4.39), so that the new supersymmetry

condition on ϕ becomes

∂Aϕ = δΣ 〈〈σc, σ〉〉ad(P ) . (4.40)

Here δΣ is a two-form on S with delta-function support along Σ which represents

the Poincaré dual of Σ. In particular, because Σ is a holomorphic curve, δΣ has

holomorphic/anti-holomorphic type (1, 1) on S, so that both sides of (4.40) are associ-

ated to differential forms of type (2, 1) on S.

We also introduce in (4.40) the natural ‘outer-product’ determined by the action of

G on U ,

〈〈 · , · 〉〉ad(P ) :
[
U∗ ⊗ (U ′)∗

]
⊗
[
U ⊗ U ′

]
−→ ad(P )

∣∣
Σ
, (4.41)

obtained from the individual pairings

U∗ ⊗ U −→ ad(P )
∣∣
Σ
, (U ′)∗ ⊗ U ′ −→ OΣ . (4.42)

Explicitly, if (T I)aa′ for I = 1, . . . ,dim(GS) represent the generators of GS acting on U in

a given basis {ua}, then locally 〈〈σc, σ〉〉ad(P ) = σc
a (T I)aa′ σa′

.

As will be very important in section 4.3, configurations of ϕ which satisfy equa-

tion (4.40) have a very natural interpretation in algebraic geometry. Namely, the delta-

function source appearing on the right in equation (4.40) implies that ϕ is now a mero-

morphic section of KS ⊗ ad(P ) which has a first-order pole along Σ, with residue given

by 〈〈σc, σ〉〉ad(P ). Thus, if Σ is determined by the vanishing of α as in section 4.1, then ϕ

appears locally near Σ as

ϕ =
〈〈σc, σ〉〉ad(P ) ds

1∧ds2
α

+ · · · , (4.43)

where (s1, s2) are local holomorphic coordinates near Σ ⊂ S, and the ‘· · · ’ indicate terms

which are regular in ϕ.
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We will have quite a bit more to say about equation (4.40) in section 4.3, but for now

let us record the rest of the BPS equations in the coupled defect and Yang-Mills theories.

The presence of the defect on Σ does not change the conditions

F
(0,2)
S = F

(2,0)
S = 0. (4.44)

Thus the gauge field on S still endows the principal GS-bundle P with a holomorphic

structure in the presence of the defect. However, the defect does induce source terms in

the D-term equation for the gauge field, so that the new D-term equation becomes

ω ∧ FS +
i

2
[ϕ,ϕ] =

1

2
ω∧δΣ

[
µ(σ , σ) − µ(σc , σc)

]
. (4.45)

In (4.45), we have introduced the moment map µ associated to the action of GS on

the representation U . Thus,

µ(·, ·) :
[
U ⊗ U ′

]
⊗
[
U ⊗ U ′

]
−→ ad(P )

∣∣
Σ
, (4.46)

and dually when µ is evaluated on U∗ ⊗ (U ′)∗. The moment map µ is closely related to

the canonical outer-product 〈〈 · , · 〉〉ad(P ) that we introduced earlier, but µ is defined using

a hermitian metric on the bundles U and U ′. This hermitian metric is also used to define

the kinetric terms on R
3,1 for σ and σc, as in appendix D. Explicitly, in terms of the

local generators (T I)aa′ which we introduced to describe the outer-product 〈〈 · , · 〉〉ad(P ),

the moment map is given as usual by µ(σ, σ) = σa(T I)a aσ
a.

Finally, for each BPS equation involving the gauge field A or scalar ϕ in (4.40), (4.44),

and (4.45), we obtain completely parallel BPS equations for the gauge field A′ and the

scalar ϕ′ on the surface S′.

4.2.3 The defect as a cosmic string

So far, we have used indirect arguments to determine the structure of the defect theory

on R
3,1 × Σ. Those arguments were based upon the adiabatic extension of older ideas [22]

about the charged matter present in F-theory compactifications on Calabi-Yau threefolds,

along with the requirement of N = 1 supersymmetry in four dimensions. However, with

a bit more work, the structure of the defect theory on R
3,1 × Σ can also be determined

directly from the partially twisted Yang-Mills theory on R
3,1 × S itself. Furthermore, as

we explain, the analysis from the perspective of S identifies the proper spin structure on

Σ with which to define the bundle K
1/2
Σ .

The analysis we are about to perform is not really new. In the context of F-theory

compactifications on Calabi-Yau threefolds, precisely the same arguments were originally

used in [22] to deduce the presence of charged hypermultiplets on R
5,1, a result which is

the basic ingredient in our previous adiabatic analysis. Essentially the same ideas have also

appeared in [35], where a twisted version of four-dimensional, N = 1 supersymmetric Yang-

Mills theory on a Kähler manifold is considered. Nonetheless, the following observations

do serve to illuminate the relationship between the bulk Yang-Mills theory on S and the

defect theory on Σ, and therefore they seem worthwhile to review.
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To start, let us assume that the holomorphic surface S satisfies h2,0(S) 6= 0, so that KS

admits holomorphic sections and S ⊂ B is not rigid. In this case, if we start with a seven-

brane with worldvolume gauge group GS which wraps S, then to obtain a configuration of

intersecting seven-branes in B, we can simply turn on a holomorphic expectation value for

the twisted scalar field ϕ.

Specifically, we assume that ϕ takes the abelian form

ϕ = ϕ0 t , ϕ0 ∈ H0
∂

(
S,KS

)
, t ∈ ad(GS) . (4.47)

Here ϕ0 is a non-trivial element in H0
∂

(
S,KS

)
, and t is a fixed generator in the Lie algebra

of GS . In this very simple background, we also take the connection on P to be trivial, so

that FS = 0 and the D-term equation on S is automatically satisfied.

Simple though the background described by (4.47) may be, it still describes a configu-

ration of intersecting seven-branes in B. The expectation value in (4.47) generically breaks

the simply-laced group GS to a product

ΓS × U(1) ⊂ GS , (4.48)

where the U(1) factor is generated by t, and ΓS is generated by the other elements in the

Lie algebra of GS which commute with t. Equivalently, from the perspective of the local

Calabi-Yau fourfoldX introduced in section 3 to describe the original seven-brane wrapping

R
3,1 × S with gauge groupGS , the expectation value for ϕ determines a deformation ofX as

in (3.25), such that the generic singularity along S unfolds to the singularity corresponding

to the simply-laced group ΓS . Finally, from the physical perspective, the expectation value

for ϕ implies that some seven-branes have been moved away from the original stack of

seven-branes wrapping S, such that the gauge group GS is generically broken as in (4.48).

The qualifier “generic” in the preceding statement is essential. Unless KS is trivial, ϕ

vanishes over a curve Σ ⊂ S representing the canonical divisor of S. At points in Σ where

ϕ vanishes, the gauge group GS is unbroken, the generic singularity along S enhances,

and the seven-brane represented by the U(1) factor in (4.48) intersects the other seven-

branes associated to the generic singularity of type ΓS along S. Hence a configuration of

intersecting seven-branes with respective worldvolume gauge groups ΓS and U(1) can be

described purely in terms of the twisted Yang-Mills theory on R
3,1 × S with gauge group

GS , such that ϕ has the expectation value in (4.47).

To determine the structure of the defect theory along Σ, we therefore want to con-

sider what happens in the eight-dimensional Yang-Mills theory when ϕ has a non-trivial,

holomorphic expectation value. Certainly away from the curve Σ ⊂ S where ϕ vanishes,

the usual Higgs mechanism operates, and the bifundamental components of the Yang-Mills

multiplet on S are massive. Here we use “bifundamental” in the general sense that it is

defined in (4.23) and (4.24).

Over Σ, something more interesting happens. As discussed in [35], Σ appears from

the four-dimensional perspective of S as a kind of global cosmic string associated to the

vanishing of the holomorphic mass term induced by ϕ for the bifundamental components

of the Yang-Mills multiplet. In precisely this situation, one expects to find bifundamental
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boson and fermion zero-modes which are trapped along Σ and which lead to massless,

charged matter on R
3,1.

We naturally want to identify the massless modes trapped along Σ with the defect

degrees of freedom that we initially introduced by hand on Σ. To do so, let us identify which

fermion zero-modes in the twisted Yang-Mills theory are actually trapped along Σ. Of

course, once we identify which fermionic zero-modes are trapped along Σ, supersymmetry

determines which bosonic zero-modes are trapped.

For the following analysis, we need only work in a small neighborhood of Σ ⊂ S, which

we parametrize with local holomorphic coordinates (s1, s2). Since ϕ vanishes to first-order

on Σ by assumption, ϕ takes the local form

ϕ = t s2 ds1∧ds2 . (4.49)

According to (4.49), Σ corresponds to the locus s2 = 0. Hence s1 is a coordinate along Σ,

and s2 is a coordinate on the normal bundle NΣ/S to Σ inside S. Similarly, the conjugate

ϕ is given by

ϕ = t s2 ds1∧ds2 . (4.50)

We now want to solve the equations of motion for the twisted fermions locally near Σ

in the background described by (4.49). According to appendix C, the relevant terms in the

twisted Yang-Mills action which determine the fermionic equations of motion on S are

IS =

∫

R3,1×S

d4xTr

(
χα∧∂Aψα + χα̇∧∂Aψ

α̇ + 2i
√

2ω∧∂Aη
α∧ψα − 2i

√
2ω∧∂Aηα̇∧ψα̇

− 1

2
ψα̇

[
ϕ,ψα̇

]
+

1

2
ψα
[
ϕ,ψα

]
+

√
2 ηα

[
ϕ,χα

]
+

√
2ηα̇

[
ϕ,χα̇

])
+ · · · . (4.51)

Hence the fermionic wavefunctions near Σ satisfy

∂Aψ
α −

√
2
[
ϕ, ηα] = 0 , ∂Aψ

α̇ +
√

2
[
ϕ, ηα̇

]
= 0 ,

ω∧∂Aη
α̇ +

i

2
√

2

[
ϕ,ψα̇

]
= 0 , ω∧∂Aη

α +
i

2
√

2

[
ϕ,ψα

]
= 0 , (4.52)

as well as

ω∧∂Aψ
α +

i

2

[
ϕ,χα

]
= 0 , ω∧∂Aψ

α̇ − i

2

[
ϕ,χα̇

]
= 0 ,

∂Aχ
α −

[
ϕ,ψα

]
= 0 , ∂Aχ

α̇ −
[
ϕ,ψα̇

]
= 0 . (4.53)

To look for fermion zero-modes trapped along Σ, we take all derivatives in (4.52)

and (4.53) to act in the direction normal to Σ. We also assume that ω takes the canonical

Euclidean form near Σ. As a result, in (4.52) only the components of ψα and ψα̇ which are

tangent to Σ appear, and in (4.53) only the components of ψα and ψα̇ which are normal

to Σ appear.

If Ψ and Ψ̃ represent any pair of fermions appearing in (4.52) and (4.53), then Ψ and

Ψ̃ will have a zero-mode trapped along Σ if these fermions satisfy classical equations of the

– 41 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
8

schematic form (we ignore irrelevant constants)

∂Ψ

∂s2
+ s2 Ψ̃ = 0 ,

∂Ψ̃

∂s2
+ s2 Ψ = 0, (4.54)

implying that Ψ and Ψ̃ behave near Σ as exp(−|s2|2). Given the local expressions for ϕ

and ϕ in (4.49) and (4.50), one can then check that the fermions in (4.52) do not have zero-

modes localized along Σ. In contrast, each bifundamental fermion in (4.53) has precisely

one such zero-mode, with Gaussian decay along the normal direction to Σ. In fact, since

we are free to scale the Kähler metric near Σ as we wish, the Gaussian decay away from Σ

can be made arbitrarily fast.

We thus obtain massless bifundamental matter localized along Σ and associated to the

following pairs of twisted fermions,

(
ψα

2
ds2

χα
12 ds

1∧ds2

)
,

(
ψα̇

2 ds
2

χα̇
12
ds1∧ds2

)
. (4.55)

By appropriately raising or lowering indices using the Kähler metric on S, we naturally

regard the fermion zero-modes derived from (ψα
2
, χα̇

12
) ≡ (ψα 2, χα̇ 2

1
) as transforming along

Σ in the bundles NΣ/S and Ω1
Σ ⊗NΣ/S , and similarly for the CPT-conjugates in (4.55).

At first glance, this observation presents a small puzzle, since the corresponding

fermions λα and λc
α̇ in the defect theory transform as sections of K

1/2
Σ and K

1/2
Σ . However,

we now recall that Σ is itself defined by the vanishing of ϕ0, a section of KS . Thus the

normal bundle NΣ/S is isomorphic to KS

∣∣
Σ
,

NΣ/S = KS

∣∣
Σ
. (4.56)

We also recall that the adjunction formula implies

KΣ = KS

∣∣
Σ
⊗NΣ/S . (4.57)

Hence by (4.56) and (4.57),

NΣ/S = K
1/2
Σ . (4.58)

As a result, the massless fermions localized along Σ in the eight-dimensional Yang-Mills

theory on S can be identified with the defect fermions λα and λc
α̇ on Σ which we initially

introduced by hand.

Another important consequence of the isomorphism in (4.58) is that it establishes a

canonical choice of spin structure on Σ. Namely, we use the spin structure associated to

the normal bundle NΣ/S to define the defect fields on Σ.

4.3 Unfolding singularities via surface operators

As shown in section 3, when the singularity type remains constant over all of S, the

primitive Casimir invariants constructed from the vevs of ϕ exactly match all possible
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ways that a singularity of general ADE type can unfold. In this section we demonstrate

that the gauge theory degrees of freedom of the intersecting seven-brane theory match to

the possible unfoldings of a more general class of F-theory compactifications where the

singularity type enhances along a real codimension two subspace of S corresponding to a

matter curve.

Given the precise match between gauge theory and geometry in the absence of a matter

curve, it is natural to suspect that the primitive Casimir invariants of ϕ still describe all

possible ways to unfold the singularity type for more general F-theory compactifications.

Indeed, as seen in section 4.1, the possible deformations are locally identical to the case

of the pure seven-brane theory. An immediate objection to this proposal follows from

inspection of tables 4.19, 4.20 and 4.21 as well as the analogous results for the A- and D-

type singularities. Indeed, the bundle assignments for the primitive Casimir invariants

only match to those of the deformation parameters of the geometry up to tensoring by

OS(nΣ) for some n > 0. In this section we give an explanation for this apparent mismatch.

The essential ingredient in this analysis is that a non-zero vev for a six-dimensional field

localized along the matter curve Σ can source a surface operator in the eight-dimensional

partially twisted theory. In particular, as shown in equation (4.43) the bulk field ϕ develops

a pole along Σ whose residue is given by the condensate of massless fields living on Σ:

ϕ =
〈〈σc, σ〉〉ad(P ) ds

1∧ds2
α

+ · · · . (4.59)

This will effectively shift the bundles which the casimirs of ϕ belong to. Moreover, even

though we will not be using it in this paper, it follows from equation (4.45) that generic

values of σ and σc can also cause the bulk gauge field to develop singularities along Σ.

We interpret these singularities as a surface operator. As noted in [17], the reduction

of equations (4.40) and (4.45) in the directions normal to Σ in S corresponds to Hitchin’s

equations in the presence of a source term. This is quite similar to the operative definition

of surface operators given in [36]. While the topological twist of the four-dimensional

gauge theory in [36] does not contain a (2, 0) form, an analogous singularity develops in the

one-forms of that twisted theory. In the present context, a surface operator corresponds

to a pole in ϕ along the curve (α = 0). Because the pole in ϕ arises from an F-term

supersymmetry condition, the path integral over arbitrary field configurations for ϕ on S

automatically localizes onto those configurations of the form (4.59), so we obtain a disorder

operator associated to Σ ⊂ S.

In the rest of this subsection we further elaborate on the connection between surface

operators of the partially twisted theory and the unfolding of singularities in an F-theory

compactification which includes intersecting seven-branes. As a warmup, we first show

how surface operators in the partially twisted eight-dimensional theory coupled to a six-

dimensional defect describe seven-brane recombination in both perturbatively and non-

perturbatively realized compactifications. Next, we show that when the corresponding

complex deformation exists, there is an exact match between meromorphic vevs of ϕ with

a simple pole structure and an arbitrary unfolding of all ADE singularities other than E8.

In the E8 case, the matter curve, where the E8 singularity enhances to a higher singularity,
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Figure 3: Prior to brane recombination, the common locus of two stacks of intersecting seven-

branes lead to additional light degrees of freedom which propagate along a six-dimensional defect

theory (top). When these light degrees of freedom condense, the branes recombine (bottom).

will lead to exotic matter structure, which has not been analyzed.20 We thus will not have

anything to say about the unfolding of the E8 singularity because this requires further

knowledge of the exotic physics living on the “matter curve”.

4.3.1 Brane recombination

In this section we demonstrate that surface operators in both perturbative and non-

perturbatively realized intersecting brane configurations correspond to brane recombina-

tion in the compactification. In the context of perturbatively realized intersecting D-brane

configurations, it is well-known that vevs for bifundamental matter trigger brane recom-

bination. For example, a four-dimensional gauge theory with gauge group U(1) × U(1)

and two Higgs fields with opposite U(1) charges will break to the diagonal U(1) subgroup

for appropriate Higgs vevs. In string theory this change in rank is interpreted as brane

recombination. See figure 3 for a depiction of this process.

To interpret brane recombination in terms of surface operators, first recall that the

transverse intersection of n + 1 D7-branes along (z = 0) with another stack of m+ 1 D7-

branes along (α = 0) is given by equation (4.6) with all ul and tk zero. For simplicity, we

take the divisor (α = 0) in the threefold base to be non-compact so that we may effectively

treat the fields of this theory as non-dynamical constants. Returning to equation (4.40),

note that the vev 〈〈σc, σ〉〉ad(P ) corresponds to an (n+ 1) × (n+ 1) matrix of rank:

l ≤ min(m+ 1, n + 1). (4.60)

20In appendix G we will discuss some related questions.

– 44 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
8

By a shift of coordinates, we may assume without loss of generality that the deformation

in the ti is:
−→
t =

(
b1
α

+O(α0), . . . ,
bl
α

+O(α0), 0n+1−l

)
(4.61)

so that the geometry now changes as:

y2 = x2 + αm+1zn+1 7→ y2 = x2 + αm+1zn+1−l
l∏

i=1

(
z +

bi
α

)
(4.62)

or,

y2 = x2 + αm+1−lzn+1−l
l∏

i=1

(αz + bi) . (4.63)

which corresponds to brane recombination of l branes of the (z = 0) stack with l branes of

the (α = 0) stack to form up to l distinct stacks at (αz+ bi = 0) for i = 1, . . . , l. Note that

here bi is the ith eigenvalue of the matrix 〈〈σc, σ〉〉ad(P ). Physically, the bound of (4.60)

corresponds to the fact that once all of the branes of a stack have combined with other

branes, there are none left over.

Starting from the local model:

y2 = x2 + αzn+1, (4.64)

a similar analysis establishes that the geometry:

y2 = x2 + αzn+1 +

n∑

i=2

α̂iz
n−i (4.65)

can be interpreted as a sequence of successive brane recombinations.

Because a similar analysis holds for brane recombination for D-type singularities, we

now proceed to examples involving E-type branes. In fact, it is in principle possible that

a similar analysis of A- and D-type singularities will not be possible in the E-type case

because this is an intrinsically non-perturbative feature of F-theory. Nevertheless, we

now show that a sequential Higgsing of fields on the matter curve still produces a general

deformation of lower singularity type.

In the next subsection we will present a more general analysis of unfolding of singulari-

ties in terms of surface operators, so for now we confine our remarks to some representative

examples. The geometry:

y2 = x3 + α2z4 (4.66)

corresponds to an E6 singularity at z = 0 and a non-compact A2 singularity at α = 0. With

conventions for deformations of E-type singularities as in [28, 22], breaking to SO(10) will

occur when the vev of ϕ lies in the direction (t,−2t, t, t, t, t) of the Cartan subalgebra of

E6. After a suitable change of variables, the geometry is given by rescaling the result

in [22] by factors of α:

y2 = α2z4 − (4αzt− x)(2αzt + x)2. (4.67)
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We note that when t develops a first order pole along α with residue b, the geometry is

now given by:

y2 = α2z4 − (4bz − x)(2bz + x)2 (4.68)

so that the resulting matter in the 16 of SO(10) is localized at (b = 0).

As a final example of brane recombination, the local geometry:

y2 = x3 + αxz3 (4.69)

corresponds to an E7 singularity at z = 0 and a non-compact A1 singularity at α = 0.

Breaking to E6 will occur when the vev of ϕ lies in the direction (0, 0, 0, 0, 0, t, 0) of the

Cartan subalgebra. Rescaling the result of [22] by powers of α yields:

y2 = x3 + α
(
xz3 + αt2z4

)
(4.70)

where we have performed a shift in the y and z coordinates in order to cast the geometry

in the above form. Note that when t develops a first order pole along α = 0 with residue

b, the resulting geometry is:

y2 = x3 + αxz3 + b2z4. (4.71)

Proceeding step by step, a general geometry can be realized by further Higgsing the matter

localized on Riemann surfaces.

4.3.2 General unfolding

In the previous section we presented a number of examples showing that general deforma-

tions of colliding singularities can be understood in terms of a sequence of brane recombi-

nations induced by surface operators in the eight-dimensional partially twisted theory. In

this section we show that the general unfolding of a singularity again precisely matches to

properties of the surface operator. To present this more general analysis, we shall assume

throughout that the resulting deformation corresponds to a holomorphic section of an ap-

propriate bundle on S. For example, when S corresponds to a del Pezzo surface, KS is

a strictly negative line bundle, so Kn
S admits no holomorphic sections for n > 0. Under

these assumptions, we now match meromorphic vevs of ϕ with a simple pole structure to

an arbitrary unfolding of all ADE singularities other than E8.

We begin by describing the unfolding of a general An singularity of the form:

y2 = x2 + αzn+1. (4.72)

When the vev of ϕ lies in a general direction of the Cartan subalgebra of An, the singularity

deforms to equation (4.7) which we reproduce here:

y2 = x2 + α
[
zn+1 + s2z

n−1 + · · · + sn+1

]
. (4.73)

By definition of the si, when one of the ti’s develops a simple pole along α = 0, each si will

also contain a simple pole. In particular, this implies that each α · si is a regular section

which does not have to vanish at α = 0. Solving for a general deformation in terms of

– 46 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
8

these regular sections, we see that the vevs of ϕ indeed match to a general deformation of

an An singularity.

Similarly, a general unfolding of the Dn singularity:

y2 = x2z + α2zn−1 (4.74)

by the vev of ϕ in a general direction of the Cartan subalgebra is the same as in [28] up to

non-trivial powers of α which are required in order to preserve the overall homogeneity of

the defining hypersurface equation:

y2 = −x2z + α2

n∏

i=1

(z + t2i ) −
n∏

i=1

t2i

z
+ 2αx

n∏

i=1

ti. (4.75)

We note that when a single ti develops a pole along α = 0, the overall α dependence of all

lower order deformations again cancels out. In this way, the vevs of ϕ again match to the

general class of deformations presented in equation (4.12).

While the above match between geometry and surface operators in the eight-

dimensional partially twisted theory is already non-trivial, we now show that this con-

nection persists for the unfolding of E6 and E7 singularities. Consider first the unfolding

of an E6 singularity of the form:

y2 = x3 + α2z4 (4.76)

by a vev of ϕ in an arbitrary direction (t1, . . . , t6) of the Cartan subalgebra of E6. The end

result of this deformation is the same as in [28] up to scaling by powers of α:

y2 = x3 + α2z4 + ε2(2α)2xz2 + ε5(2α)3xz + ε6(2α)4z2 (4.77)

+ ε8(2α)4x+ ε9(2α)5z + ε12(2α)6

where the explicit functions εi as functions of the ti are defined in appendix 1 of [28] as

functions of the elementary symmetric polynomials si introduced earlier. The particular

numerical coefficients have been chosen to conform with the conventions of [28].

Our expectation is that when the 27 localized along the matter curve in S develops a

vev, a pole in ϕ will remove the overall α dependence of each type of deformation. In the

present case, however, it follows from appendix 1 of [28] that the leading order behavior of

the εj is:

εj ∝ (s1)
j +O(tj−1

i ) (4.78)

where O(tj−1
i ) denotes contributions of lower degree in each parameter ti. In particular,

when a single ti develops a pole along α = 0, εj has a pole of order j along α = 0.

Returning to equation (4.77), it would at first appear that this branch does not match to

a geometric unfolding of the singularity due to the presence of uncancelled poles in α.

In fact, this is an artifact of the choice of coordinates used to present the most general

possible unfolding. Returning to equation (4.77), we present the general deformation in

terms of coordinates X ≡ x and Y ≡ y and:

Z ≡ z − 4

27
α(s1)

3 +
1

3
αs1s2, (4.79)
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the definining hypersurface equation for a general deformation may now be written as:

Y 2 = X3 + α2Z4 + β2α
2XZ2 + β3α

3Z3 + β5α
3XZ (4.80)

+ β6α
4Z2 + β8α

4X + β9α
5Z + β12α

6 (4.81)

where the subscripts of the βi denote the degree in terms of polynomials in the ti. Using

the explicit expressions for the εi given in appendix 1 of [28], we find that the leading order

behavior of the coefficients as polynomials in the ti is:

β2α
2 = α2

(
−4

3
(s1)

2 +O(ti)

)
(4.82)

β3α
3 = α3

(
16

27
(s1)

3 +O(t2i )

)
(4.83)

β5α
3 = α3

(
−4

3
s1(s2)

2 +
8

3
(s1)

2 s3 +O(t2i )

)
(4.84)

β6α
4 = α4

(
8

9
(s1)

2 (s2)
2 − 16

9
(s1)

3s3 +O(t3i )

)
(4.85)

β8α
4 = α4

(
−1

3
(s2)

4 +
4

3
s1(s2)

2s3 −
4

3
(s1)

2(s3)
2 +O(t3i )

)
(4.86)

β9α
5 = α5

(
4

9
s1(s2)

4 − 16

9
(s1)

2(s2)
2s3 +

16

9
(s1)

3(s3)
2 +O(t4i )

)
(4.87)

β12α
6 = α6

(
2
27 (s2)

6 − 4
9s1(s2)

4s3 + 8
9 (s1)

2(s2)
2(s3)

2

−16
27(s1)

3(s3)
3 +O(t5i )

)
. (4.88)

When a single ti develops a simple pole, each si also develops a simple pole along α = 0. By

inspection of the above result, we thus conclude that each product βiα
k above is still regular

and has no leading order dependence on α. As for the A- and D-type singularities, this

implies that an arbitrary unfolding of the singularity matches to some choice of eigenvalues

for ϕ. This is a highly non-trivial match between possible deformations of the singularity

and the partially twisted seven-brane theory!

In a similar fashion, we now consider unfolding an E7 singularity of the form:

y2 = x3 + αxz3 (4.89)

by a vev of ϕ in an arbitrary direction (t1, . . . , t7) of the Cartan subalgebra of E7. Up to

powers of α introduced to preserve homogeneity, the unfolding of E7 in [28] is:

y2 = − x3 + 16αxz3 + ε2αx
2z + ε6α

2x2 + ε8α
3xz (4.90)

+ ε10α
4z2 + ε12α

4x+ ε14α
5z + ε18α

6

where the εi as functions of the tj are defined in appendix 2 of [28]. As before, the leading

order behavior of εi ∝ (s1)
i so that a simple pole in one of the t’s would appear to not

admit a geometric interpretion. As in the case of the E6 singularity, we now show that

this is an artifact of the choice of coordinates.
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To this end, we first shift the x coordinate via the substitution:

x 7→ x+
1

3

(
ε2αz + ε6α

2
)
. (4.91)

Setting Y ≡ y and X ≡ x, we also define:

Z ≡ z − 1

16
α(s1)

4 +
1

6
α(s1)

2s2 −
1

6
αs1s3 (4.92)

so that the defining hypersurface equation for a general deformation may now be written as:

Y 2 = −X3 + 16αXZ3 + β2α
2Z4 + β4α

2XZ2 + β6α
3Z3 (4.93)

+ β8α
3XZ + β10α

4Z2 + β12α
4X + β14α

5Z + β18α
6

where as before, the subscripts indicate the degree of each βi in terms of polynomials in

the ti. The explicit leading order behavior of each βi as a polynomial in the ti may be

found in appendix F.

It follows from the results in appendix F that a simple pole in one of the ti’s exactly

cancels the overall α dependence of each deformation parameter. In particular, this implies

that the degrees of freedom of the partially twisted E7 theory with a defect exactly matches

the unfolding of the singularity.

4.4 Chiral matter and Yukawa couplings from Σ

Having determined how the partially twisted seven-brane theory couples to a six-

dimensional defect, we now determine some basic properties of supersymmetric vacua

in the associated four-dimensional effective theory. Consider first the trivial case where

the matter curve is given by a flat T 2. In this case, Λ and Λc correspond to two four-

dimensional N = 1 chiral superfields transforming in complex conjugate representations.

Indeed, these chiral multiplets determine an N = 2 hypermultiplet. In the special case

where U is a real representation of GS , the six-dimensional fields can also organize into a

half-hypermultiplet. This reduces to a single four-dimensional N = 1 chiral multiplet.

In the presence of potentially non-trivial background gauge field configurations on

S and S′, the resulting zero mode spectrum is determined by bundle valued Dolbeault

cohomology groups with support on Σ. The net chirality of the spectrum is then given by a

topological invariant which is uniquely fixed by the representation and gauge bundle content

of the six-dimensional fields localized on Σ. Because much of this discussion parallels a

similar treatment given for the pure seven-brane theory, our discussion will be brief. As

opposed to the case of the pure seven-brane theory wrapping a Hirzebruch or del Pezzo

surface, we find that the non-trivial coupling between bulk gauge fields propagating on a

compact surface and six-dimensional fields localized along Σ induces non-trivial Yukawa

couplings among the zero modes. We conclude this section by presenting some toy models

which further explicate these results.
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4.4.1 Massless spectrum

In this subsection we determine the massless particle spectrum in four dimensions of fields

localized along a Riemann surface Σ in S in the presence of a potentially non-trivial back-

ground gauge field configuration. We begin with an analysis of the relevant group theory.

Proceeding in a parallel fashion to the case of the pure seven-brane theory, non-trivial back-

ground gauge field configurations on S and S′ which take values in subgroups HS ⊂ GS

and HS′ ⊂ GS′ will break GS ×GS′ to the commutant subgroup. In many applications, S′

is non-compact so that the associated gauge group factor is non-dynamical. As before, we

let ΓS denote the maximal subgroup of GS such that GS ⊃ ΓS ×HS, with similar notation

for ΓS′ . Letting Γ = ΓS × ΓS′ and H = HS × HS′, decomposing U × U ′ into irreducible

representations of Γ ×H yields:

U ⊗ U ′ =
⊕

j

(νj , Vj). (4.94)

A similar decomposition holds for the bundle U ⊗ U ′. In the obvious notation, we let Vj

denote the corresponding bundle which transforms as a representation Vj of H.

Because the supercurrent is covariantly constant in the partially twisted six-

dimensional theory, it is enough to specify the massless spectrum of fermions. Taking

into account the additional twist by an ambient line bundle on Σ so that the result-

ing fermions transform as zero- and one-forms on Σ, it follows that the fermions λανj

and λc
αν∗

j
are both annihilated by ∂A+A′ and ∂

†

A+A′ and therefore also by the Laplacian

∆∂ = ∂A+A′∂
†

A+A′ + ∂
†

A+A′∂A+A′ . The chiral spectrum is therefore:

λανj
∈ H0

∂
(Σ,K

1/2
Σ ⊗ Vj) (4.95)

λc
αν∗

j
∈ H0

∂
(Σ,K

1/2
Σ ⊗ V∗

j ) ≃ H1
∂
(Σ,K

1/2
Σ ⊗ Vj)

∗. (4.96)

Using the analogue on Σ of the isomorphism in (3.43), the anti-chiral spectrum is:

λα̇ν∗

j
∈ H0

∂
(Σ,K

1/2
Σ ⊗ Vj) ≃ H0

∂
(Σ,K

1/2
Σ ⊗ Vj)

∗ (4.97)

λc
α̇νj

∈ H0
∂
(Σ,K

1/2
Σ ⊗ V∗

j ) ≃ H1
∂
(Σ,K

1/2
Σ ⊗ Vj) (4.98)

where in the above we have used Serre duality. Comparing equations (4.95) and (4.96)

with (4.97) and (4.98), we observe that the resulting spectrum is manifestly CPT-invariant.

It now follows that the net number of generations minus anti-generations transforming in

the representation νj is:

nνj
− nν∗

j
= h0(Σ,K

1/2
Σ ⊗ Vj) − h1(Σ,K

1/2
Σ ⊗ Vj) = χ(Σ,K

1/2
Σ ⊗ Vj). (4.99)

The Euler character χ(Σ,K
1/2
Σ ⊗Vj) is now given by the analogue of the index theorem

found in equation (3.48) for the Riemann surface Σ. Returning to equation (4.99), we

therefore find:

nνj
− nν∗

j
= (1 − g) rk

(
K

1/2
Σ ⊗ Vj

)
+

∫

Σ

c1

(
K

1/2
Σ ⊗ Vj

)
(4.100)

where g denotes the genus of the Riemann surface Σ.
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4.4.2 More Yukawa couplings

In this section we demonstrate that as opposed to the pure seven-brane theory, non-trivial

Yukawa couplings can originate from the coupling of the bulk gauge fields to the matter

curve. As explained near equation (4.32), it is convenient to treat Λ and Λc as a collection

of four-dimensional fields labelled by points on Σ. Labelling all zero mode solutions of the

bulk and defect theory by α, β and γ, the resulting cubic superpotential term now follows

from equation (4.32):

dαβγ =

∫

Σ

cijk

(
Λc,α,i

(
Aβ,j + A′β′,j

)
Λγ,k

)
(4.101)

where the indices i, j, k are group indices in GΣ ⊃ GS ×GS′ and cijk is a structure constant

associated with the decomposition to ΓS × ΓS′ .

Before closing this subsection, we now elaborate on the geometric content of the cou-

pling between two fields localized on Σ in representations ν1 and ν2 and a bulk field trans-

forming in a representation τ with associated bundles V1, V2 and T which transform in

representations of the structure group of the instanton configuration. A non-trivial Yukawa

coupling corresponds to a tri-linear map:

H0
∂
(Σ,K

1/2
Σ ⊗ V1) ⊗H0

∂
(Σ,K

1/2
Σ ⊗ V2) ⊗H1

∂
(Σ,TΣ) → C (4.102)

where TΣ denotes the restriction of T to Σ. This map is natural in the sense thatH1
∂
(Σ,TΣ)

canonically pairs with H0
∂
(Σ,K

1/2
Σ ⊗V1)⊗H0

∂
(Σ,K

1/2
Σ ⊗V2) because of Serre duality on Σ:

H1
∂
(Σ,TΣ) ≃ H0

∂
(Σ,KΣ ⊗ T ∗

Σ )∗ = H0
∂
(Σ,KΣ ⊗ V1 ⊗ V2)

∗ (4.103)

where in the final equality we have used the fact that the corresponding F-term only

transforms as a gauge invariant singlet provided TΣ = V∗
1 ⊗ V∗

2 . In this final form for

H1
∂
(Σ,TΣ), we see that the two fields on Σ indeed pair naturally with the dual cohomology

group which describes a component of the bulk gauge field.

4.4.3 A refined toy model

Although we shall defer the construction of more realistic GUTs to future work in [19], we

now explain how to generate a three generation SO(10) toy model with non-trivial Yukawa

couplings. We find it encouraging that many of the broadest features of SO(10) GUTs can

be achieved simply using supersymmetric gauge field configurations corresponding to line

bundles on S. Consider a seven-brane wrapping a del Pezzo 3 surface with GS = SO(12)

coupled to a defect. The charged matter localized along the defect is given by a six-

dimensional half hypermultiplet in the 32 spinor representation. We assume that the

matter curve is given by an exceptional curve Σ with homology class E1 in H2(dP3,Z).

While it is important to describe the explicit geometry of the F-theory compactification,

in order to focus on the most salient features of the toy model we shall defer such issues

to future investigations.

The bulk gauge group GS = SO(12) breaks to SO(10) × U(1) in the presence of a

supersymmetric gauge field configuration which takes non-trivial values in the U(1) factor.
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This corresponds to a supersymmetric line bundle L on the surface S. The adjoint 66 and

spinor 32 decompose under this subgroup as:

SO(12) ⊃ SO(10) × U(1) (4.104)

66 → 450 + 10 + 102 + 10−2 (4.105)

32 → 161 + 16−1 (4.106)

so that the resulting matter content in four dimensions is:

102 ∈ H1
∂
(S,L2) (4.107)

10−2 ∈ H1
∂
(S,L−2) (4.108)

161 ∈ H0
∂
(Σ,K

1/2
Σ ⊗ LΣ) (4.109)

16−1 ∈ H0
∂
(Σ,K

1/2
Σ ⊗ L−1

Σ ), (4.110)

where LΣ denotes the restriction of L to the matter curve Σ.

In appendix E we show that there exist a family of Kähler classes such that the

line bundle:

L = OS(a1E1 + a2E2 + a3E3) (4.111)

is supersymmetric provided aiaj < 0 for some i 6= j.

To achieve three 16’s with a minimal number of net 10’s in the bulk, we take a1 = −3,

a2 = 2, a3 = 2 so that:

L = OS(−3E1 + 2E2 + 2E3) (4.112)

LΣ = OΣ(+3). (4.113)

Because they are bulk fields, the net number of massless chiral fields transforming in the

10 follows from equations (3.49) and (3.51):

n102 = 32 (4.114)

n10−2 = 34 (4.115)

n10−2 − n102 = 2. (4.116)

Next consider the six-dimensional half hypermultiplet localized along the matter curve.

The zero modes for the 16’s and 16’s are respectively given by harmonic representatives

in the cohomology groups (4.109) and (4.110). The total number transforming in each

representation is:

n16 = dimH0
∂
(Σ,K

1/2
Σ ⊗ LΣ) = dimH0

∂
(Σ,OΣ(2)) = 3 (4.117)

n
16

= dimH0
∂
(Σ,K

1/2
Σ ⊗ L−1

Σ ) = dimH0
∂
(Σ,OΣ(−4)) = 0. (4.118)

Labelling the three zero modes on Σ as 16(i) for i = 1, 2, 3, it follows from equa-

tion (4.101) that the contribution to the superpotential from the bulk to surface interaction

term is schematically of the form:

W ⊃ λij16
(i) × 16(j) × 10(S) (4.119)
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where 10(S) is shorthand for all possible contributions from the large number of zero

mode solutions transforming in this representation of the SO(10) GUT. Note that in this

particular case, the structure constants of GS only allow the 10−2’s to couple to the 16’s

because of the U(1) charges of all fields in the decomposition of GS .

While we defer a full discussion of Yukawa couplings to [19], we now briefly comment on

some general features of the flavor structure associated with coupling two matter fields on

Σ to a bulk field in S for models in which such interaction terms are the sole contribution to

the four-dimensional effective superpotential. While in the example just presented we have

localized all three generations on a single matter curve, it is in principle possible to localize

different generations on distinct matter curves, or to allow some generations to descend

from bulk fields. This can in principle be used to induce non-trivial texture zeroes in the

Yukawa matrices. As an example, suppose we have three 16’s localized on three distinct

matter curves in S with some number of bulk 10(S)’s. Labelling the three generations as

16(i) for i = 1, 2, 3, the Yukawa couplings are still described by equation (4.119) where now

the Yukawa matrix takes the schematic form:

λij ∼



λ11 0 0

0 λ22 0

0 0 λ33


 . (4.120)

As another example, suppose that we have constructed a consistent three generation SO(10)

GUT model with one 16 and a 10 coming from bulk zero modes on S with two generations

localized along a single matter curve. Denoting the bulk 16 by 16(1), we let 16(2) and

16(3) denote the two generations localized on the matter curve. In this case, the analogue

of equation (4.119) implies that the Yukawa matrix takes the form:

λij ∼




0 0 0

0 λ22 λ23

0 λ23 λ33


 . (4.121)

5. Multiple intersections and more Yukawa couplings

While the generic singularity type of the elliptic Calabi-Yau fourfold corresponds to GS

over S with corresponding gauge group, simple genericity arguments imply that there exist

subloci of complex codimension one and two in S along which the rank of GS increases

by one and two, respectively. This follows from the dictionary established between the

unfolding of the singularity of the geometry and its interpretation in terms of fields of the

partially twisted theory. For example, consider the case where GS = E6. In this case, the

local geometry is:

y2 = x3 + α2z4 (5.1)

where α is a section of a suitable bundle over S. When this bundle is non-trivial, there

is a codimension one locus on S where α = 0. Although the singularity type appears to

degenerate when α = 0, there are higher order terms in this defining equation which do
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not correspond to light degrees of freedom for α 6= 0. Along this locus, however, the next

relevant term in the singularity is:

y2 = x3 + α2z4 + βxz3 (5.2)

so that for generic points on the curve α = 0 the geometry contains an E7 singularity.

Note that in the case where S is a del Pezzo surface, K−1
S is an ample line bundle so that

when α has a section, β does as well. In particular, this implies that for generic points

of S, β 6= 0. The singularity type can enhance to even higher type along the discrete

collection of points in S where α = β = 0. Adding in the next highest term, the model is

therefore of the form:

y2 = x3 + α2z4 + βxz3 + γz5 (5.3)

so that when α = β = 0 the geometry contains an E8 type singularity.

This example is illustrative of the generic situation. Letting r denote the rank of GS ,

along curves Σj the singularity type GΣj
enhances to rank r + 1. Moreover, at l points

p
(k)
I , some collection of curves Σi1,. . . , and Σin intersect where k = 1, . . . , l and I denotes

a mult-index in the n variables. Along such points, the singularity type G
p
(k)
I

has rank

r+ 2. While arguments based on dimension counting would suggest that only two matter

curves can intersect, we shall argue that for exceptional type singularities, three curves

can also generically meet. The above analysis implies that the singularity types obey the

containment relations:

G
p
(k)
I

⊃ GΣj
× U(1) ⊃ GS × U(1) × U(1). (5.4)

See figure 4 for a depiction of the enhancement in singularity type along defects of the bulk

theory on S.

As discussed in section 4, one potential source of four-dimensional chiral matter local-

ized along a curve Σj originates from the local enhancement of singularity type from GS to

GΣj
. In this section we perform a similar analysis to analyze the last stage of enhancement

to a singularity of type G
p
(k)
I

.

Before proceeding to a more detailed analysis of rank two enhancement in singularity

type, note that whenGS = E7, the resultingG
p
(k)
ij

would appear to have rank nine. Because

the largest compact exceptional group has rank eight, we conclude that the resulting physics

is likely to be somewhat more exotic. This special case has been discussed in [23] and we

defer further discussion to appendix G. For now, we will assume that all of the singularities

encountered are of ADE type.

To better understand the physics associated with points pI where the singularity type

enhances twofold, we first treat the case where GpI
is an A-type singularity. In this case,

a perturbative treatment of the geometry in terms of intersecting D7-branes is available,

and it is well-known that such configurations signal the presence of additional superpoten-

tial terms in the four-dimensional effective theory. Re-interpreting these results in terms

of the general philosophy outlined in [22] yields a similar result for more general geome-

tries which contain points of twofold enhancement in the singularity type. We find that
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GS

Gp 12

GΣ1

GΣ2

GΣ1

GΣ2

GΣ3

Gp 123

a)

b)

SG

Figure 4: Depiction of the bulk eight-dimensional gauge theory defined by F-theory with singu-

larity type GS at generic points of the complex surface S. Along a codimension one defect, the

singularity type can generically enhance to the higher rank singularity GΣj
. At codimension two

defects where distinct matter curves intersect, the geometry can enhance to the even higher rank

singularity Gpij
when two curves intersect (a) and Gpijk

when three curves intersect (b). Contrary

to expectations based on dimension counting, we find that case (b) is generic for geometries with

exceptional type singularities.

multiple intersections of matter curves are generic for certain F-theory compactifications

and moreover induce additional Yukawa couplings in the four-dimensional effective the-

ory. To better illustrate these facts, we present explicit examples of this phenomenon for

E-type singularities.

5.1 Enhancement to A-type singularities

As a representative example, we first consider the triple intersection of D7-branes wrapping

three distinct divisors in the threefold base described by the local geometry:

y2 = x2 + (z − t1)
n1(z − t2)

n2(z − t3)
n3 (5.5)

so that there are six-dimensional bifundamentals of U(ni)×U(nj) localized at each pairwise

intersection of divisors.21 When the ti are all regular sections, the three stacks of D7-branes

wrap compact divisors in the threefold base. On the other hand, as explained in previous

sections, we can also consider the case where some of the ti are meromorphic sections so

that some of these divisors are non-compact. Decomposing into four-dimensional N = 1

superfields Λ and Λc, by abuse of notation we shall often denote possible contributions

from either type of superfield as Λij when the context is clear.

21In order to emphasize the connection with D-branes, in this section we include the explicit U(1) factor

of the worldvolume gauge group so that the full gauge group is U(n).
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To proceed further, note that this situation is well-described by perturbative type

IIB superstrings. In this context, we recall that a pair of intersecting D7-branes gives

bifundamental fields Λij on the intersection. Further, while triple intersections of D7-

branes at a point do not contribute additional matter fields, the disc diagram amplitude

ending on the three D7-branes generates a superpotential term in the four dimensional

effective theory between the Λij . In fact, the superpotential computation localizes to

constant maps of the disc to the point of the triple intersection. The end result is the

superpotential term localized at the triple intersection point:

W ⊃ Λ12Λ23Λ31|p. (5.6)

We will now try to recover this well-known result in the framework of geometric singu-

larities so that we can apply this methodology to more general examples and in particular to

E-type singularities. Specializing to the case where n1 = n2 = 1 and setting n3 = n yields:

y2 = x2 + zn(z2 − (t1 + t2)z + t1t2) (5.7)

where in passing from equation (5.5) to equation (5.7) we have set t3 = 0 for notational

simplicity. At generic points of S, the singularity type of the geometry at z = 0 is an An−1

singularity. In this case, each Σi corresponds to the locus (z = 0) ∩ (z = ti). Along the

vanishing locus for each Σi, this appears to enhance to An and at the discrete collection of

points in S where t1 = t2 = 0, the singularity type enhances to An+1.

We now interpret this system from the perspective of the gauge theory. Recall that

the ti denote non-zero vevs for the eigenvalues of the ϕ form on S. Along the locus

where only one ti vanishes, the generic U(n) × U(1)1 × U(1)2 gauge group enhances to

U(n + 1)i × U(1)i, where the subscript indicates the embedding inside U(n + 2). Indeed,

given the partially broken gauge group U(n)×U(1)1 ×U(1)2, there are two ways in which

such an embedding can occur. We note that there is one additional enhancement when

the vevs ϕ are proportional to the identity in the U(2) direction so that t1 = t2. A

six-dimensional field in the bifundamental of two of the unitary group factors localizes

along the defining equations for the corresponding t’s. This additional field lies on another

Riemann surface Σ′ which is not localized in S. We note that this is consistent with the

fact that the corresponding matter fields on Σ′ are not charged under the gauge group GS .

Decomposing the adjoint representation of U(n+ 2) to U(n)×U(1)1 ×U(1)2, we therefore

conclude that there is a six-dimensional field in the (n, 0,+1) localized along the matter

curve (z = 0) ∩ (z = t1), another six-dimensional field in the (n,−1, 0) localized along

(z = 0) ∩ (z = t2), and a third in the (·,+1,−1) localized along (z = t1) ∩ (z = t2).

At the common intersection point t1 = t2 = 0, the wave functions of the three matter

fields overlap. In fact, we can directly generalize the philosophy in [22] to the case at hand

and study the theory from the viewpoint of the gauge theory Gp = U(n + 2). Viewing

t1 and t2 as scalar fields in the Cartan of U(2) ⊂ U(n + 2), note that in the limit where

the ti vanish, we have an eight-dimensional theory with gauge group U(n + 2). Turning

on the ti’s has the effect of creating fields localized on each matter curve. Note that

the eight-dimensional theory with gauge group U(n + 2) also contains a cubic Yukawa
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coupling between fields localized on matter curves. Evaluating the triple overlap of the

three wavefunctions at the common point of intersection, we find a non-zero contribution

to the superpotential in the four dimensional effective theory. We have thus recovered

the perturbatively generated superpotential from those locations in the geometry where a

twofold enhancement in the singularity type occurs.

Note that when t1 and t2 share a mutual pole, the wave function for the bifundamental

of U(1)1 ×U(1)2 along the corresponding Riemann surface can have non-compact support.

In this case, this field appears as a coupling constant in the compact theory realized on

the surface S. In the four dimensional effective theory, a non-zero vev for this bifun-

damental generates a mass term for the vector-like pair of fields in the fundamental and

anti-fundamental of U(n).

In the above analysis for A-type singularities, we have implicitly assumed that the ti
are global sections. In general, this may not hold because only t1 + t2 and t1t2 appear in

the local presentation of the geometry. This more general case corresponds to geometries

where the ti do not remain invariant under a monodromy in the fiber direction so that the

singularity is not of ‘split’ type. As explained in [21], when the singularity is not of split

type, the gauge group is reduced by some outer automorphism which in the perturbative

string setup would correspond to orientifolding an An singularity. Because our primary

interest in this paper is GUT groups which descend from an E type singularity, we shall not

treat in any detail the action of outer automorphisms on the corresponding GUT groups.

A similar analysis holds when the highest singularity type of the geometry is Dn.

In this case, the six-dimensional fields localized on matter curves are bifundamentals of

SO(2n)×U(m), SO(2n)×U(m′) and U(m)×U(m′). As in the case of A-type singularities,

a cubic coupling corresponds to a mass term because the last type of bifundamental is

non-dynamical in the four-dimensional effective theory.

5.2 Cubic couplings from codimension two

Given the above example, we now describe how cubic couplings originate for more general

geometries. As discussed above, we have a sequence of gauge groups

GpI
⊃ GΣj

× U(1) ⊃ GS × U(1) × U(1). (5.8)

For each Σj there exists a six-dimensional matter field Λj which can potentially lead to

chiral matter in four dimensions. Each Λj is part of the adjoint representation of the

bigger group GpI
. The interaction term in the theory with gauge group GpI

induces an

interaction between the fields Λa
j , where a denotes a group theory index for GpI

. Letting

fabc denote the structure constants of GpI
, the resulting induced interaction term coming

from the adjoint interaction for the seven-branes with gauge group GpI
is:

fabcΛ
a
jΛ

b
kΛ

c
l . (5.9)

We now interpret the geometric content of the above equation. Recall from the twisting of

the six-dimensional defect theory that each Λi transforms as a section of the bundle K
1/2
Σi

.

On the other hand, we will now argue that there is a canonical identification:

KΣ1 ⊗KΣ2 ⊗KΣ3 |p = 1. (5.10)
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Further, a mild generalization of the discussion in subsection 4.2.3 near equation (4.58)

demonstrates that there is in fact a canonical choice of square root for each KΣ in equa-

tion (5.10). This uniquely fixes the overall sign of 11/2. To see equation (5.10), note that

equation (4.58) implies:

KΣ3 = N2
Σ3/S (5.11)

and so we can write:

KΣ1 ⊗KΣ2 ⊗KΣ3 |p = (KΣ1 ⊗NΣ3/S)|p ⊗ (KΣ2 ⊗NΣ3/S)|p = 1 (5.12)

where the last equality follows from the fact that the Σi’s intersect pairwise inside S.

We now describe the form of the resulting superpotential term in four dimensions.

Letting Λαj ,a denote one of the zero modes of Λj on Σj , αj denotes an index which runs

over the set of chiral zero modes and as before, a denotes a group index. The resulting

cubic superpotential term between the corresponding chiral fields is therefore given by:

dαj ,βk,γl
= fabcΛ

αj ,a
j (pjkl)Λ

βk,b
k (pjkl)Λ

γl,c
l (pjkl). (5.13)

with similar conventions for βk and γl. We now proceed to some examples of the relevant

group theory in the context of E-type singularities.

5.3 Local cubic couplings for E-type singularities

To illustrate the above formalism, we now show how cubic couplings can originate from E-

type singularities. First consider the local geometry mentioned previously where Gp = E8,

GΣ = E7 and GS = E6 so that:

y2 = x3 + γz5 + βxz3 + α2z4. (5.14)

Because we may locally trivialize γ near the common vanishing locus of α and β, we may

analyze the matter content of this theory as an E8 gauge theory where ϕ has developed a

vev. The deformation in the Cartan which breaks E8 to E6 × U(1) × U(1) corresponds

to the t-direction
−→
t = (t1, t2, 0, 0, 0, 0, 0, 0). Decomposing the adjoint representation of E8

under E6×U(1)×U(1), there are three 27’s with U(1) charges (+1, 0), (0,−1) and (−1,+1)

localized along the matter curves (t1 = 0), (t2 = 0) and (t1 = −t2). Note that along each

matter curve, the singularity type enhances to E7. As discussed in section 4, the matter

curves can be read off from the geometry by writing α, β, γ as explicit functions of the ti.

It now follows that there are three matter curves in S with the background U(1) charge

for each determining the total number of 27’s on each curve. The overlap of the three

wavefunctions at the common intersection points t1 = t2 = 0 contributes an additional

273 gauge invariant term to the superpotential. A similar analysis holds for more general

breaking patterns. As another example, when Gp = E7, GΣ = E6 and GS = SO(10), the

resulting superpotential will contain the product 16 × 16 × 10. This type of interaction

term can originate from the unfolding:

y2 = x3 + γxz3 + βz4 + αx2z. (5.15)
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i)

ii)

Figure 5: Dynkin diagrams which illustrate how the gauge group SU(5) with corresponding sin-

gularity A4 can enhance along matter curves to A5 and D5 and can undergo a further rank two

enhancement at isolated points to either D6 (i) or E6 (ii). Whereas the first possibility can gener-

ically be realized in perturbative type II string theory constructions for any rank, the second case

is exceptional and can give rise to Yukawa couplings which vanish perturbatively.

We wish to emphasize that even if the bulk gauge group is of classical A- or D-type,

a twofold enhancement in rank to an E-type singularity can generate Yukawa couplings

which vanish identically in string perturbation theory. To illustrate this point, we note

that while it is certainly possible to engineer a D-brane construction of an SU(5) GUT

model with three generations of 5’s and 10’s as in for example [5], a semi-realistic SU(5)

GUT must contain contributions to the superpotential of the form:

WSU(5) ⊃ 5H × 5M × 10M (5.16)

and:

WSU(5) ⊃ 5H × 10M × 10M (5.17)

where the subscripts H and M respectively denote Higgs and matter fields of the SU(5)

GUT. In perturbative type II string theory, the coupling of (5.17) is zero because the

group indices only contract in the presence of a five index ε tensor so that the purported

coupling would violate the U(1) charge associated with the U(5) gauge symmetry of the

D-brane. Note that even if this U(1) lifts via a Green-Schwarz mechanism, in perturbative

string theory it will persist as a global symmetry which can, however, be violated by

non-perturbative effects.

From the perspective of geometry, we can expect to get 5’s and 5’s from enhancement

to an A5 singularity and 10’s from enhancement to a D5 singularity. Whereas the result-

ing twofold enhancement to a D-type singularity can always be realized in perturbative

D-brane constructions, for SU(5) there is another possibility where the singularity type

enhances to E6. See figure 5 for a depiction of this enhancement. In such cases, the 783

interaction of the E6 gauge theory will contain a contribution of the form given by (5.17).

Note that at other points of the geometry we can generically expect rank two enhance-

ment to a D-type singularity. These points will lead to superpotential contributions of

the form given by (5.16). This example illustrates our general philosophy that even for

classical GUT groups, the presence of an E-type singularity in the geometry is important

for phenomenology.
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6. A final toy model

In this section we present a final toy model for an SO(10) GUT which combines many

of the ingredients described in the previous sections. To this end, we treat the theory of

a seven-brane wrapping a del Pezzo 3 surface with bulk gauge group GS = SO(12). In

order to introduce chiral matter with non-trivial interactions, we analyze a model in which

an enhancement by one rank occurs along some matter curves to both E7 and D7 type

singularities. To allow a more varied class of interaction terms, we also require that these

matter curves intersect at points such that the singularity type enhances to E8. After

introducing a supersymmetric gauge field configuration to induce a chiral matter spectrum

in four dimensions, we determine the cubic coupling contributions to the superpotential in

the four-dimensional effective theory.

We begin with an analysis of how deformations in the Cartan of the E8 singularity

localized at some point p descend to a rank 7 singularity along matter curves and the rank

6 bulk gauge group SO(12). The breaking pattern:

E8 ⊃ SO(12) × U(1)1 × U(1)2 (6.1)

is achieved by noting that SO(16) is a maximal subalgebra of E8. Indeed, the adjoint

representation of E8 decomposes to the adjoint and spinor representations of SO(16) as:

E8 ⊃ SO(16) (6.2)

248 → 120 + 128. (6.3)

Because the adjoint of E8 decomposes to SO(12) via:

E8 ⊃ SO(12) × SU(2)1 × SU(2)2 (6.4)

248 → (66,1,1) + (1,3,1) + (1,1,3) + (32′,2,1) + (32,1,2) + (12,2,2) (6.5)

we can identify four matter curves in S by examining the U(1) charges of the fields. The

half hypermultiplet content of each curve Σi for i = 1, . . . , 4 is therefore given by a 32′

localized along Σ1, a 32 along Σ2, a 12 along Σ3 and another 12 along Σ4. Because the

matter content from Σ3 and Σ4 is essentially identical, for illustrative purposes we shall

assume that the gauge field configuration has been chosen so that the zero mode content

on Σ4 is trivial.

We now study vacua with a non-trivial supersymmetric gauge field configuration in

the bulk theory which breaks SO(12) to SO(10) × U(1). The relevant representations of

SO(12) decompose as:

66 → 450 + 102 + 10−2 + 10 (6.6)

32 → 161 + 16−1 (6.7)

32′ → 16−1 + 16+1 (6.8)

12 → 100 + 12 + 1−2. (6.9)
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Again invoking the results of appendix E, as an example we consider supersymmetric

gauge field configurations determined by line bundles of the form:

L = OS(E1 + E2 + aE3) (6.10)

where a is a negative integer.

Labelling the the zero modes corresponding to bulk 10±2’s by 10
(S)
±2 , their representa-

tives are classified by the bundle valued cohomology groups:

10
(S)
±2 ∈ H1

∂

(
S,L±2

)
. (6.11)

The number of massless 10
(S)
±2 ’s in the bulk of S is now given by the same index computation

used in previous toy models:

n
10

(S)
+2

= 2a2 − a+ 1 (6.12)

n
10

(S)
−2

= 2a2 + a+ 5. (6.13)

To deduce the matter content along each matter curve, we first specify the homology

class of each Σi. While it is important to specify the explicit Calabi-Yau fourfold which

realizes such a configuration, for illustrative purposes we defer such issues to future work

and assume that the effective class in H2(S,Z) of each matter curve is:

[Σ1] = E1 (6.14)

[Σ2] = H − E1 − E2 (6.15)

[Σ3] = 3H − E1 − E2 (6.16)

so that Σ1 and Σ2 have genus zero and Σ3 has genus one.22 Note that these classes

intersect pairwise as [Σi] · [Σj] = +1 for i 6= j. Restricting L to Σ1 and Σ2 yields:

LΣ1 = OΣ1(−1) (6.17)

LΣ2 = OΣ2(+2). (6.18)

For our present purposes, it is enough to note that LΣ3 is a degree two line bundle on Σ3.

We now present the zero mode content localized along each matter curve. Along Σ1,

the number of massless 16’s and 16’s are classified by the cohomology groups:

1 × 16−1 ∈ H0
∂
(Σ1,K

1/2
Σ1

⊗OΣ1(+1)) = H0
∂
(Σ1,OΣ1(0)) (6.19)

0 × 16+1 ∈ H0
∂
(Σ1,K

1/2
Σ1

⊗OΣ1(−1)) = H0
∂
(Σ1,OΣ1(−2)) (6.20)

where we have also indicated the multiplicity of each type of massless mode by the overall

prefactor. Summarizing, we find a single 16 which descends from Σ1.

Along Σ2, the number of 16’s and 16’s are classified by the cohomology groups:

2 × 16+1 ∈ H0
∂
(Σ2,K

1/2
Σ2

⊗OΣ2(+2)) = H0
∂
(Σ2,OΣ2(1)) (6.21)

0 × 16−1 ∈ H0
∂
(Σ2,K

1/2
Σ2

⊗OΣ2(−2)) = H0
∂
(Σ2,OΣ2(−3)) (6.22)

22The genus g of a smooth curve C in S is given by the intersection-theoretic formula C ·(C+KS) = 2g−2.
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so that two generations transforming in the 16 descend from Σ2.

To compute the dimensions of the relevant cohomology groups for powers of the degree

two line bundle LΣ3 on Σ3, we first note that because KΣ3 is trivial, the Kodaira vanishing

theorem implies:

H0
∂
(Σ3,L−n

Σ3
) ≃ H1

∂
(Σ3,Ln

Σ3
)∗ = 0 (6.23)

when n > 0. In this particular case, it now follows that either h0(Σ3,Lm
Σ3

) or h1(Σ3,Lm
Σ3

)

is zero for m 6= 0 so that the index theorem of equation (4.100) in fact counts the total

number of zero mode solutions. Along Σ3, the number of 1±2’s are classified by the

cohomology groups:

4 × 12 ∈ H0
∂
(Σ3,K

1/2
Σ3

⊗ L2
Σ3

) = H0
∂
(Σ1,L2

Σ3
) (6.24)

0 × 1−2 ∈ H0
∂
(Σ1,K

1/2
Σ1

⊗ L−2
Σ3

) = H0
∂
(Σ1,L−2

Σ3
) = 0 (6.25)

where in computing the multiplicities we have used the fact that:
∫

Σ3

c1 (LΣ3) = degLΣ3 = 2. (6.26)

Even though the 100’s are uncharged under the background gauge field on Σ3, because Σ3

is a genus one curve, we also find non-trivial zero mode solutions on Σ3 which are classified

by the cohomology group:

1 × 100 ∈ H0
∂
(Σ3,OΣ3) ≃ H1

∂
(Σ3,OΣ3)

∗ ≃ C. (6.27)

In the present context, because the 100 descends from a single half hypermultiplet on Σ3,

H0
∂
(Σ3,OΣ3) and H1

∂
(Σ3,OΣ3) classify CPT conjugate particles so that the “chiral matter”

is computed by H0
∂
(Σ3,OΣ3). To summarize, the chiral matter content on Σ3 is given by

four singlets and a single 10.

We now summarize the contributions to the superpotential of the four-dimensional

effective theory:

Wtot = WΣΣS +WΣΣΣ (6.28)

where WΣΣS denotes the contribution from couplings between two fields on a Riemann

surface and a bulk field in S, and WΣΣΣ denotes the contribution from the triple overlap

of zero modes localized at the intersection point. The contribution to WΣΣS is:

WΣΣS = λ(1)16−1 × 16−1 × 10
(S)
+2 (6.29)

+ λ
(2)
ij 16

(i)
+1 × 16

(j)
+1 × 10

(S)
−2

+ λ
(3)
k 1

(k)
+2 × 100 × 10

(S)
−2

where the superscript on the λ’s labels the contribution from each matter curve, and

i, j = 1, 2 label the two zero modes in the 16 localized along Σ2 and k = 1, . . . , 4 labels the

four zero modes in the singlet localized along Σ3. The contribution to WΣΣΣ is:

WΣΣΣ = αi16−1 × 16
(i)
+1 × 100 (6.30)

where in the above equation, all wave functions for the zero modes are evaluated at the

point p and αi includes the contribution from the structure constants of E8 restricted

to SO(10).
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7. Conclusions

In this paper we have developed a framework for constructing GUT models from local

compactifications of F-theory in terms of a partially twisted eight-dimensional theory with

codimension one and two defects. In the presence of a non-trivial gauge bundle, both

the pure eight-dimensional theory and theory with defects admit a chiral matter spectrum.

When the Kähler surface of the partially twisted theory is a del Pezzo or Hirzebruch

surface, non-zero interaction terms require the presence of codimension one defects. In

the absence of codimension two defects, the possible interaction terms are greatly limited

because two fields localized along a single matter curve must participate in each such

Yukawa coupling. More general couplings are possible in the presence of codimension two

defects. In this case interaction terms can arise from the triple overlap of matter curves at a

single point of the bulk gauge theory. In addition to providing explicit examples of various

model building ingredients, we have also shown that the degrees of freedom of the partially

twisted eight-dimensional theory precisely match to the unfolding of the singularity type of

the F-theory geometry. In particular, we have demonstrated that brane recombination for

both perturbative and non-perturbatively realized gauge theories in F-theory admits both

a consistent gauge theory and geometric interpretation in terms of field vevs with a given

pole structure. In the remainder of this section we discuss some possible applications and

extensions of the above work.

Although our ultimate goal is the construction of semi-realistic GUT models, the

present investigation has also established a beautiful connection between a partially twisted

eight-dimensional theory and the unfolding of geometric singularities in F-theory. Along

these lines, the appearance of fields localized along surface operators, and the presence

of point-like “defects” in the partially twisted eight-dimensional theory seem quite natural

from the perspective of F-theory. It would be interesting to determine how the intersection

of surface operators is described in the four-dimensional topological theory.

In the context of more phenomenological applications, it is also important to study

supersymmetry breaking in the present context. While we have restricted attention to

supersymmetry preserving vacua which satisfy a modified Hitchin-like system with a source

term along a six-dimensional defect, non-supersymmetric instanton solutions of the internal

portion of the eight-dimensional theory would correspond to metastable or stable super-

symmetry breaking vacua in the four-dimensional effective theory. It would be interesting

to develop additional features of such a scenario.

Finally, while for concreteness the toy models presented have all been based on cases

where S is a del Pezzo surface, much of the analysis we have presented is of a more general

scope and directly applies to a wide class of F-theory compactifications which may not

possess a heterotic dual. Anticipating potential applications to GUTs, note that when

h2,0(S) 6= 0, additional moduli corresponding to the deformation of S in the compactifi-

cation will in general be present. From the perspective of the GUT group, such fields are

charged under the adjoint representation. In the presence of a suitable background flux,

these moduli can be frozen to a non-zero vev. These fields can then play the role of more

traditional GUT Higgs fields used to break the GUT group down to the Standard Model

gauge group.
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A. Review of Hirzebruch and del Pezzo surfaces

We now briefly review some properties of Hirzebruch and del Pezzo surfaces. For n ≥ 0,

the middle homology of the Hirzebruch surfaces Fn is generated by the effective classes f

and σ with intersection pairings:

f · f = 0, f · σ = 1, σ · σ = −n. (A.1)

The canonical divisor of Fn is given by:

KS = −c1(S) = −(n+ 2)f − 2σ. (A.2)

The effective classes correspond to 2-cycles af+bσ such that a and b are both non-negative

with at least one non-trivial.

A del Pezzo surface is defined by the condition that −KS > 0. This condition is

satisfied for the surfaces F0 = P
1 ×P

1 and dP0 = P
2. There are eight additional del Pezzo

surfaces given by blowing up P
2 at up to eight points in general position. For n > 0, The

middle homology of the del Pezzo n (dPn) surface is generated by the hyperplane class H

and the exceptional classes E1, . . . , En with intersection pairing:

H ·H = 1,H ·Ei = 0, Ei · Ej = −δij. (A.3)

The canonical divisor on dPn is given by:

KS = −c1(dPn) = −3H +

n∑

i=1

Ei. (A.4)

The class of any effective curve C in dPn reduces to a sum over the generators Ci of

the Kähler cone as:

C =
∑

i

niCi (A.5)
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where each ni ≥ 0. The generators of the Kähler cone for each del Pezzo n ≥ 1 are

well-known in the mathematics literature:

Surface Generators

dP1 E1,H − E1

dP2 Ei,H −
2∑

j=1
Eij

dP3 Ei,H −
2∑

j=1
Eij

dP4 Ei,H −
2∑

j=1
Eij

dP5 Ei,H −
2∑

j=1
Eij , 2H −

5∑
j=1

Eij

dP6 Ei,H −
2∑

j=1
Eij , 2H −

5∑
j=1

Eij

dP7 Ei,H −
2∑

j=1
Eij , 2H −

5∑
j=1

Eij , 3H − 2Ei −
6∑

j=1
Eij

dP8

Ei,H −
2∑

j=1
Eij , 2H −

5∑
j=1

Eij , 3H − 2Ei −
6∑

j=1
Eij ,

4H − 2 (Ei + Ej +Ek) −
5∑

j=1
Eij

(A.6)

where all indices are distinct. We note in passing that the number of generators of

the Kähler cone for each del Pezzo are 1, 2, 3, 6, 10, 16, 27, 56, 240.

A common formula which is used in the text to compute the chiral matter content

induced in the presence of a supersymmetric line bundle is given by the Todd genus on a

surface S: ∫

S

Td(S) =

∫

S

c1(S)2 + c2(S)

12
= 1 − h0,1 + h0,2 = χ(S,OS) (A.7)

which is the holomorphic Euler characteristic. On the Hirzebruch and del Pezzo surfaces,

h0,1 = h0,2 = 0 so that the Todd genus is 1.

B. On-shell twisted supersymmetries of the eight-dimensional theory

In this appendix we present our conventions for the action of the supercharges Qα and

Qα̇, for α, α̇ = 1, 2, on the bosons and fermions of the eight-dimensional, partially twisted

Yang-Mills theory. As standard, we denote the action of Qα and Qα̇ by δα( · ) = [Qα , · }
and δα̇( · ) = [Qα̇ , · }.

The action by δα and δα̇ on the bosons and fermions in the twisted Yang-Mills the-

ory on R
3,1 × S follows immediately from the reduction of the on-shell supersymmetry

transformations in the maximally supersymmetric ten-dimensional Yang-Mills theory.
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First, we find that the supersymmetry transformations of the eight-dimensional gauge

field A and the twisted scalar fields (ϕ,ϕ) are given by

δαAm = 0 , δα̇Am =
√

2ψα̇ m ,

δαAm =
√

2ψα m , δα̇Am = 0 ,

δαAµ = i (σµ)αα̇ η
α̇ , δα̇Aµ = −i (σµ)αα̇ η

α ,

δαϕmn =
√

2χα mn , δα̇ϕmn = 0 ,

δαϕmn = 0 , δα̇ϕmn =
√

2χα̇ mn . (B.1)

Here Aµ for µ = 0, . . . , 3 are the components of the gauge field on R
3,1, and (Am, Am)

for m = 1, 2 are the components of the gauge field on S. Also, (σµ)αα̇ for µ = 0, . . . , 3

are the standard Pauli matrices which represent the Clifford algebra on R
3,1, as defined

for instance in appendix B of [37]. Up to rescalings of the fermions, the supersymmetry

transformations in (B.1) are the only possibility consistent with the topological twist.

Finally, we have included various factors of
√

2 in (B.1) so that our conventions for the

effective N = 1 supersymmetry algebra on R
3,1 agree with the conventions in [37].

Similarly, the on-shell supersymmetry transformations of the fermions are given by

δαηβ =
(
σµν
)
αβ Fµν − i ǫαβ D , δα̇ηβ = 0 ,

δαηβ̇ = 0 , δα̇ηβ̇ = (σµν)α̇β̇ Fµν + i ǫα̇β̇ D ,

δαψβ m =
√

2 ǫαβ (∂†Aϕ)m , δα̇ψβ m = i
√

2 (σµ)βα̇ Fµm ,

δαψβ̇ m = i
√

2 (σµ)αβ̇ Fµm , δα̇ψβ̇ m =
√

2 ǫα̇β̇ (∂†Aϕ)m ,

δαχβ mn = −
√

2 ǫαβ Fmn , δα̇χβ mn = i
√

2 (σµ)βα̇Dµϕmn ,

δαχβ̇ mn = i
√

2 (σµ)αβ̇ Dµϕmn , δα̇χβ̇ mn = −
√

2 ǫα̇β̇ Fmn . (B.2)

Let us explain the notation in (B.2). First, D is shorthand for the section of ad(P ) on S

given by

D = −⋆S

(
ω∧FS +

i

2
[ϕ ,ϕ]

)
. (B.3)

In the above, ω is the Kähler form on S, and ⋆S denotes the duality operator on S defined

by the given Kähler metric. Also, we let FS ≡ F |S denote the restriction of the curvature

to S, so that ω∧FS is a top-form on S upon which ⋆S naturally acts. The overall sign

in (B.3) is just a convention.

Throughout the paper, we use (∂A, ∂A) to indicate the (1, 0) and (0, 1) components

of the covariant derivative defined by the gauge field on S, and we let (∂†A, ∂
†
A) be the

adjoint operators defined using ⋆S. Explicitly, ∂†A = −⋆S ∂A⋆S , and similarly for ∂†A. In

local coordinates (sm, sm) on S, (∂†Aϕ)m = gnn (∂A)n ϕmn, where gnn is the Kähler metric.

Finally, we use Dµ to indicate the covariant derivative defined by the gauge field along

R
3,1, and we normalize the self-dual and anti-self-dual projection operators (σµν)αβ and

(σµν)α̇β̇ appearing in (B.2) as in [37]. Also, ǫαβ and ǫα̇β̇ are the usual anti-symmetric

tensors on two indices.
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C. Partially twisted action of the seven-brane theory

In this appendix we determine the Lagrangian of the partially twisted Yang-Mills theory on

R
3,1 ×S with gauge group GS . In the limit where the fields of the partially twisted theory

are independent of the coordinates on R
3,1, the reduction to S is given by the twisted

version of four-dimensional, N = 4 supersymmetric Yang-Mills theory studied in [24]. One

purpose of the present appendix is to explicitly demonstrate the quasi-topological nature

of the partially twisted eight-dimensional theory. Other twisted eight-dimensional theories

on Spin(7) manifolds and Calabi-Yau fourfolds have been studied for instance in [38, 39].

The supersymmetric Lagrangian for the twisted Yang-Mills theory on R
3,1 × S is most

conveniently written once we pass to a (mostly) off-shell formulation of the supersymmetry

algebra. The existence of an off-shell formulation of the supersymmetry transformations

in (B.1) and (B.2) is not so surprising, since the off-shell formulation is modeled on the

standard off-shell formulation of N = 1 supersymmetry in four dimensions.

Auxiliary fields. We first introduce auxiliary bosonic fields (G ,H ,D). Here

G = Gm dsm is a complex boson which transforms on S as a section of Ω
1
S ⊗ ad(P ),

and H = Hmn ds
m∧dsn is another complex boson which transforms on S as a section of

Ω2
S ⊗ ad(P ). From the perspective of the four-dimensional effective theory on R

3,1, G and

H are the auxiliary components of N = 1 chiral superfields

Am = Am +
√

2 θψm + θθ Gm + . . . ,

Φmn = ϕmn +
√

2 θχmn + θθHmn + . . . , (C.1)

where we use ‘· · · ’ to indicate the usual higher-order terms in the chiral superfields.

While the presentation in (C.1) is convenient for describing certain properties of the four-

dimensional effective theory, we note that Am does not transform covariantly under arbi-

trary gauge transformations on R
3,1 × S but rather only under those which are constant

along S. As a result, we will have to be careful about eight-dimensional gauge-invariance

when we construct the action.

Along with G and H, we also introduce the conjugate bosons G = Gm dsm and

H = Hmn ds
m∧dsn which transform as sections of Ω1

S ⊗ ad(P ) and Ω2
S ⊗ ad(P ), respec-

tively. These bosons appear as the auxiliary components in anti-chiral superfields conjugate

to those in (C.1).

We finally introduce a real scalar field D which transforms on S as a section of ad(P ). In

the four-dimensional effective theory, D is the auxiliary field of the N = 1 vector multiplet,

appearing in WZ gauge as

V = −θσµθ Aµ + i θθθη − i θθθη +
1

2
θθθθD . (C.2)

Eventually, the auxiliary scalar field D in (C.2) will be identified on-shell with the expression

in (B.3).
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In terms of the auxiliary bosons (G ,H ,D), the supersymmetry transformations (B.2)

of the twisted fermions are now given by

δαηβ =
(
σµν
)
αβ Fµν − i ǫαβ D , δα̇ηβ = 0 ,

δαηβ̇ = 0 , δα̇ηβ̇ = (σµν)α̇β̇ Fµν + i ǫα̇β̇ D ,

δαψβ m = −
√

2 ǫαβ Gm , δα̇ψβ m = i
√

2(σµ)βα̇ Fµm ,

δαψβ̇ m = i
√

2(σµ)αβ̇ Fµm , δα̇ψβ̇ m = −
√

2 ǫα̇β̇ Gm ,

δαχβ mn = −
√

2 ǫαβ Hmn , δα̇χβ mn = i
√

2(σµ)βα̇Dµϕmn ,

δαχβ̇ mn = i
√

2(σµ)αβ̇ Dµϕmn , δα̇χβ̇ mn = −
√

2 ǫα̇β̇ Hmn . (C.3)

Ideally, the supersymmetry transformations of the auxiliary bosons (G ,H ,D) are de-

termined by the condition that δα and δα̇ satisfy the N = 1 supersymmetry algebra

{δα , δβ} =
{
δα̇ , δβ̇

}
= 0 ,

{
δα , δα̇

}
= 2i (σµ)αα̇Dµ . (C.4)

However, as is well-known, the algebra in (C.4) cannot be realized off-shell on the N = 1

vector multiplet in WZ gauge. We know of two ways to work around this problem, such

that we either preserve manifest supersymmetry or manifest gauge-invariance at all stages

of the computation.

One strategy suggested in [40 – 42] is to treat the eight-dimensional fields of the par-

tially twisted theory as a collection of four-dimensional fields on R
3,1 labelled by coordinates

on S. Organizing these four-dimensional fields into N = 1 superfields, the superspace action

for the partially twisted Yang-Mills theory on R
3,1 × S manifestly preserves supersymme-

try. However, the superspace description of the twisted Yang-Mills action on R
3,1 × S also

obscures the higher-dimensional gauge invariance of the theory.

Because we prefer to maintain manifest gauge-invariance over manifest supersymme-

try, in this appendix we pursue an alternative strategy. Rather than ask for an off-shell

formulation of the full N = 1 supersymmetry algebra in (C.4), we consider only the sim-

pler algebra {
δα̇ , δβ̇

}
= 0 . (C.5)

The simple algebra in (C.5) does close off-shell when the auxiliary bosons (G,H,D) trans-

form as

δα̇Gm = i
√

2 (σµ)αα̇ Dµψ
α
m + 2

(
∂Aηα̇

)
m ,

δα̇Gm = 0 ,

δα̇Hmn = i
√

2(σµ)αα̇ Dµχ
α
mn + 2

[
ϕmn , ηα̇

]
,

δα̇Hmn = 0

δα̇D = −(σµ)αα̇ Dµη
α . (C.6)

The supersymmetry transformations in (C.6) are merely covariant versions of the usual

transformations for the auxiliary bosons in the N = 1 chiral and vector multiplets.
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For future reference, we also recall the conjugate supersymmetry transformations

under δα,

δαGm = 0 ,

δαGm = i
√

2 (σµ)αα̇ Dµψ
α̇
m + 2

(
∂Aηα

)
m ,

δαHmn = 0

δαHmn = i
√

2 (σµ)αα̇ Dµχ
α̇
mn + 2

[
ϕmn , ηα

]
,

δαD = −(σµ)αα̇ Dµη
α̇ . (C.7)

Constructing the supersymmetric action. Despite the fact that (C.3) and (C.6) only

provide an off-shell realization for the simple algebra involving δα̇ in (C.5), the partially

twisted action on R
3,1 × S must be invariant under both δα and δα̇. To construct an action

invariant under both types of transformations, we use the fact that δα is conjugate to

δα̇. As a result, any action IS which is both real and annihilated by δα is automatically

annihilated by δα̇.

At weak coupling, the partially twisted action serves to enforce the BPS equations of

motion described in subsection 3.3.1. In order to make the quasi-topological nature of the

partially twisted theory manifest, we organize the action into three types of terms. The

first two types of terms correspond to δ2 or δα̇ exact operators so that by construction such

terms are annihilated by δα̇. In terms of the effective theory in four dimensions, the final

class of terms corresponds to integrating the superpotential over chiral superspace. These

terms are δα̇ closed but not exact.

We now present the δ2 trivial terms of IS. Many of these terms contribute to terms

in the action serve to enforce the BPS equations motion. To this end, we first introduce

the operator

O(1) =
1

4

∫

R3,1×S

d4x Tr(H∧ϕ) . (C.8)

We now compute

I1 = δ2O(1) ,

=

∫

R3,1×S

d4x Tr
(
H∧H − Dµϕ∧Dµϕ + i [ϕ ,ϕ]D+

+ iDµχ
α (σµ)αα̇ χ

α̇ −
√

2 ηα [ϕ ,χα] −
√

2 ηα̇ [ϕ ,χα̇]
)
. (C.9)

As expected, the integrands of (C.8) and (C.9) are differential forms of top-degree on S.

The role of I1 is to produce a Gaussian action for H and H, along with certain kinetic

terms for ϕ and the fermions. In order to reproduce the relations F
(2,0)
S = 0 and F

(0,2)
S = 0,

we next introduce source terms for H and H which enforce these conditions when H and

H are integrated out. One of these source terms is also δ2-trivial and descends from

the operator

O(2) = −1

4

∫

R3,1×S

d4x Tr
(
F

(2,0)
S ∧ϕ

)
, (C.10)
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so that its contribution to the action is

I2 = δ2O(2) ,

= −
∫

R3,1×S

d4x Tr

(
F

(2,0)
S ∧H + G∧∂Aϕ + χα̇∧∂Aψ

α̇ − 1

2
ψα̇

[
ϕ ,ψα̇

])
. (C.11)

The final δ2-trivial term which contributes to IS serves to reproduce the standard

action for the four-dimensional N = 1 vector multiplet in R
3,1. Explicitly, this term

descends from the operator

O(3) =
1

8

∫

R3,1×S

d4x ω∧ωTr
(
ηα̇ η

α̇
)
. (C.12)

We note that because ηα̇ is a zero-form on S, we must introduce two powers of the Kähler

form ω on S to obtain an appropriate measure for the integral in (C.12). As completely

standard for the N = 1 vector multiplet in four dimensions, we obtain

I3 = δ2O(3) ,

=

∫

R3,1×S

d4x ω∧ωTr

(
1

2
D2 − 1

4
Fµν Fµν − i

8
ǫµνρσFµνFρσ + i (σµ)αα̇Dµη

α ηα̇

)
. (C.13)

In (C.13), ǫµνρσ is the anti-symmetric tensor associated to the Pontryagin density for the

curvature on R
3,1. While this naively appears to fix a specific value of the θYM angle

in the four-dimensional effective theory, we note that because the Pontryagin density is a

topological term, it is automatically supersymmetric. Therefore, we may add an additional

topological term of this type to the quasi-topological action in order to achieve a four-

dimensional effective theory with an arbitrary θYM angle.

Besides terms which are δ2-trivial, the action IS also contains a set of terms of the form

I4 = ǫα̇β̇ δα̇O(4)

β̇
, (C.14)

where O(4)

β̇
for β̇ = 1, 2 is again a gauge-invariant functional of the fields. In order that δα̇

annihilate I4, the functional O(4)

β̇
cannot be arbitrary but must satisfy

δα̇O(4)

β̇
= −δβ̇O

(4)
α̇ . (C.15)

With a little bit of calculation, one can check that the following choice for O(4)

β̇
satis-

fies (C.15),

O(4)

β̇
= − i√

2

∫

R3,1×S

d4x ω∧Tr
(
ψβ̇∧G − i F

(1,0)
S µ (σµ)αβ̇∧ψα −

√
2F

(1,1)
S ηβ̇

)
, (C.16)

where F
(1,0)
S µ = Fµm dsm is determined by the mixed components of the curvature on

R
3,1 × S. Given the first term appearing in O(4)

β̇
, the coefficients of the remaining two

terms are fixed uniquely by the anti-symmetry condition in (C.15).
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Of course, one might ask how we arrived at (C.16). The significance of (C.16) is that

the corresponding expression for I4 contains a term which is quadratic in the auxiliary

fields G and G,

I4 =

∫

R3,1×S

d4x 2ω∧Tr
(
iG∧G − i F

(1,0) µ
S ∧F (0,1)

S µ + F
(1,1)
S D +

+ Dµψ
α̇(σµ)αα̇∧ψα − i

√
2ψα̇∧∂Aη

α̇ − i
√

2 ∂Aη
α∧ψα

)
. (C.17)

From the perspective of the N = 1 supersymmetric theory on R
3,1, the terms in I4 give rise

to D-terms in the low-energy effective action. However, we do not know of any way to write

I4 in the form I4 = δ2O′ for any gauge-invariant expression O′. This feature is presumably

related to the difficulties first encountered in [40] in providing a fully local gauge-invariant

description in N = 1 superspace for the ten-dimensional super-Yang-Mills action.

The final term which appears in IS is simply the conjugate to I2 in (C.11), which we

denote by

WS = −
∫

R3,1×S

d4xTr

(
F

(0,2)
S ∧H + G∧∂Aϕ + χα∧∂Aψα +

1

2
ψα
[
ϕ ,ψα

])
. (C.18)

As one can check, though WS is not δα̇-exact, WS is nonetheless annihilated by δα̇. Our

notation for WS is no accident, since WS can be written as an integral over superspace of

the superpotential for the twisted Yang-Mills theory on R
3,1 × S,

WS = −
∫

R3,1×S

d4x d2θ Tr
(
F

(0,2)
S ∧Φ

)
. (C.19)

Here Φ is the chiral superfield with lowest bosonic component ϕ as introduced in (C.1),

and F
(0,2)
S is the chiral superfield with lowest bosonic component F

(0,2)
S . Explicitly, in terms

of the chiral superfield Am in (C.1),

F
(0,2)
S = ∂A + A∧A ,

= F
(0,2)
S +

√
2 θ ∂Aψ + θθ

(
∂AG − 1

2
[ψα , ψα]

)
+ . . . . (C.20)

Of all the terms that will appear in IS , the terms in (C.18) are most important, since these

terms determine the effective superpotential on R
3,1 which describes F-theory compacti-

fied on X.

The supersymmetric action IS for the partially twisted Yang-Mills theory on R
3,1 × S
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is now given by

IS = I1 + I2 + I3 + I4 + WS ,

=

∫

R3,1×S

d4xTr

[
ω∧ω

(
1

2
D2 − 1

4
FµνFµν

)
− 2i ω∧F (1,0)

S µ ∧F (0,1) µ
S − Dµϕ∧Dµϕ+

+ 2i ω∧G∧G + H∧H − F
(2,0)
A ∧H − F

(0,2)
S ∧H − G∧∂Aϕ − G∧∂Aϕ+

+ 2

(
ω∧F (1,1)

S +
i

2
[ϕ ,ϕ]

)
D
]

+ . . . .

(C.21)

This action deserves a number of comments. As indicated by the ‘· · · ’, we omit from (C.21)

terms involving fermions as well as the Pontryagin density on R
3,1 which appears in (C.13).

Modulo the Pontryagin term, IS is purely real. Since δα and δα̇ annihilate this term, it

now follows that the action IS is annihilated by δα and δα̇ as claimed.

By the same token, we are free to add to IS any other topological terms involving

characteristic classes of the surface S and the GS -bundle P . Along with the effective θYM-

angle on R
3,1, the coefficients of such terms are fixed by closed string moduli which appear

as parameters in the local F-theory backgrounds under consideration. Such topological

terms will not play a role in the present discussion.

Finally, if we integrate out the auxiliary bosons appearing in (C.21), the off-shell

supersymmetry algebra in (C.3) reduces to the on-shell algebra in (B.2). By construction,

the on-shell action then enforces the F- and D-term supersymmetry conditions at weak-

coupling. Finally, as is more or less apparent and dictated by supersymmetry, the on-shell

action derived from (C.21) provides a twisted version of the maximally supersymmetric

Yang-Mills action on R
3,1 × S.

D. Partially twisted action of the six-dimensional defect theory

In this appendix we present the action for a six-dimensional hypermultiplet charged under

a gauge group GS ×GS′ associated with the partially twisted six-dimensional defect theory

which originates from the intersection of seven-branes along R
3,1 × Σ. As opposed to

most topological field theories, the on-shell supersymmetry transformations of the fields

do not descend directly from a reduction of super Yang-Mills theory in ten dimensions.

For this reason, it is convenient to treat the six-dimensional defect theory in a superspace

formalism which preserves four-dimensional N = 1 off-shell supersymmetry. Indeed, in

this appendix we will effectively reverse the usual order of discussion by instead using the

off-shell supersymmetry transformations to determine the on-shell transformations of fields

in the six- and eight-dimensional theories.

In the spirit of [40 – 42], we now treat the six-dimensional fields of the defect theory as a

collection of four-dimensional fields labelled by points of Σ. In terms of the four-dimensional

effective theory, the six-dimensional hypermultiplet organizes into two collections of N = 1

chiral multiplets (σ, λ,K) and (σc, λc,Kc) which transform in dual representations of GS ×
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GS′ . The off-shell supersymmetry transformations of the bosonic degrees of freedom are

given by the usual expressions for an N = 1 chiral multiplet. As for the eight-dimensional

theory, we follow the conventions of [37]:

δασ =
√

2λα , δα̇σ = 0 ,

δασ = 0 , δα̇σ =
√

2λα̇ ,

δασ
c =

√
2λc

α , δα̇σ
c = 0 ,

δασ
c = 0 , δα̇σ

c =
√

2λ
c
α̇ . (D.1)

Similarly, the fermions transform as:

δαλβ = −
√

2ǫαβK , δα̇λβ = i
√

2(σµ)βα̇Dµσ ,

δαλβ̇ = i
√

2(σµ)αβ̇Dµσ , δα̇λβ̇ = −
√

2ǫα̇β̇K ,
δαλ

c
β = −

√
2ǫαβKc , δα̇λ

c
β = i

√
2(σµ)βα̇Dµσ

c ,

δαλc
β̇ = i

√
2(σµ)αβ̇Dµσc , δα̇λc

β̇ = −
√

2ǫα̇β̇Kc . (D.2)

Finally, the auxiliary fields transform as:

δαK = 0 , δα̇K = i
√

2(σµ)αα̇Dµλ
α + 2

[
σ , ηα̇] ,

δαK = i
√

2(σµ)αα̇Dµλ
α̇

+ 2
[
σ , ηα] , δα̇K = 0 ,

δαKc = 0 , δα̇Kc = i
√

2(σµ)αα̇Dµλ
cα + 2

[
σc , ηα̇

]
,

δαKc = i
√

2(σµ)αα̇Dµλcα̇
+ 2
[
σc , ηα

]
, δα̇Kc = 0 . (D.3)

Organizing these fields into N = 1 chiral superfields and a background vector superfield

which descends from the bulk eight-dimensional theory on S, we have:

Λ = σ +
√

2θλ+ θθK + · · · (D.4)

Λc = σc +
√

2θλc + θθK + · · · (D.5)

V = −θσµθAµ + iθθθη − iθθθη +
1

2
θθθθD (D.6)

where for notational simplicity we have presented the background vector multiplet in WZ

gauge. There is a similar background vector superfield V ′ which descends from the bulk

theory on R
3,1 × S′. Finally, to present gauge covariant interactions in the internal direc-

tions, we also introduce the gauge covariant derivative superfield defined in equation (4.36)

which we reproduce here for the convenience of the reader:

∂A+A′ = ∂ + A + A′ ,

= ∂A+A′ +
√

2θ
(
ψ + ψ′

)
+ θθ

(
G + G′

)
+ . . . . (D.7)

The partially twisted action now follows from the known result for coupling a six-

dimensional hypermultiplet to a background gauge field in flat space presented in [41].

Indeed, because manifest off-shell supersymmetry is preserved at all stages, for our purposes
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it is enough to repackage this result in the partially twisted theory. In N = 1 superspace

the action is

IΣ =

∫

R3,1×Σ

d4x d4θ ω∧
[ (

Λ, e−2V −2V ′

Λ
)

+
(
Λc, e2V +2V ′

Λc
) ]

(D.8)

+

∫

R3,1×Σ

d4xd2θ
〈
Λc, ∂A+A′Λ

〉
+ h.c. (D.9)

In order to define the D-terms appearing in (D.8), we introduce a hermitian metric ( · , · )
on the bundle K

1/2
Σ ⊗ U ⊗ U ′ in which the chiral superfield Λ is valued, and similarly for

the bundle K
1/2
Σ ⊗ U∗ ⊗ (U ′)∗ in which Λc is valued. If haa represents the hermitian metric

on K
1/2
Σ ⊗ U ⊗ U ′ in a local basis, then

(
Λ, e−2V −2V ′

Λ
)

= haa Λae−2V −2V ′

Λa . (D.10)

We emphasize that the pairing ( · , · ) includes an implicit complex conjugation on one

argument, as apparent above. Because the quantity in (D.10) transforms as a scalar on Σ,

we use the pullback of the Kähler form ω on S to define an integration measure over Σ

in (D.8).

In contrast to (D.8), the expression in (D.9) is defined without reference to a metric

on either the bundles U and U ′ or on Σ. Thus 〈 · , · 〉 indicates the canonical dual pairing

between U ⊗ U ′ and U∗ ⊗ (U ′)∗, so that
〈
Λc, ∂A+A′Λ

〉
transforms as a differential form

of type (1, 1) appropriate to integrate over Σ. Indeed, this is an expected consequence of

twisting the field content of the six-dimensional theory.

Whereas the bulk gauge fields A and A′ naturally couple to the six-dimensional fields

via the superpotential in (D.9), a natural superpotential coupling involving Φ does not

appear to exist, since Φ transforms as a (2, 0)-form on S.

To proceed further, we next expand IΣ in terms of component fields. This yields

IΣ =

∫

R3,1×Σ

d4x ω∧
[
(K,K) + (Kc,Kc) − (Dµσ,D

µσ) − (Dµσ
c,Dµσc) (D.11)

−
(
σ, (D + D′) · σ

)
+
(
σc, (D + D′) · σc

) ]
+

+

∫

R3,1×Σ

d4x
[ 〈

Kc, ∂A+A′σ
〉

+
〈
σc, ∂A+A′K

〉
+
〈
σc, (G + G′) · σ

〉

+
〈
Kc
, ∂A+A′σ

〉
+
〈
σc, ∂A+A′K

〉
+
〈
σc, (G + G ′

) · σ
〉 ]

+ · · · ,
where the “· · · ” indicate additional fermionic terms in IΣ. Also, in expressions such as D · σ,

we indicate the action of elements in the Lie algebra of the group GS on the representation

U , and similarly for GS′ and U ′.

We now determine both the on-shell supersymmetry transformations for the six- and

eight-dimensional fields as well as the resulting BPS equations. Integrating out the six-

dimensional auxiliary fields yields the conditions

K = ⋆Σ ∂A+A′σc, Kc = −⋆Σ ∂A+A′σ, (D.12)

K = ⋆Σ ∂A+A′σc, Kc = −⋆Σ ∂A+A′σ. (D.13)
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Here ⋆Σ denotes the duality operator acting on sections of K
1/2
Σ ⊗ U ⊗ U ′ and

K
1/2
Σ ⊗ U∗ ⊗ (U ′)∗ as determined by the given metrics on Σ and U ⊗ U ′.

Whereas the supersymmetry transformations for the six-dimensional bosons such as

σ are the same both on and off-shell, the on-shell supersymmetry transformations of the

fermions follow by substituting in the values of the auxiliary fields in the off-shell transfor-

mations of (D.2) so that:

δαλβ = −
√

2ǫαβ ⋆Σ ∂A+A′σc , δα̇λβ = i
√

2(σµ)βα̇Dµσ ,

δαλβ̇ = i
√

2(σµ)αβ̇Dµσ , δα̇λβ̇ = −
√

2ǫα̇β̇ ⋆Σ ∂A+A′σc ,

δαλ
c
β =

√
2ǫαβ ⋆Σ ∂A+A′σ , δα̇λ

c
β = i

√
2(σµ)βα̇Dµσ

c ,

δαλc
β̇ = i

√
2(σµ)αβ̇Dµσc , δα̇λc

β̇ =
√

2ǫα̇β̇ ⋆Σ ∂A+A′σ . (D.14)

Some of the on-shell supersymmetry transformations of the eight-dimensional fields also

change in the presence of the six-dimensional defect theory. Integrating out the auxiliary

fields G and G from the total action I = IS + IΣ implies

2i ω∧G = ∂Aϕ − δΣ 〈〈σc, σ〉〉ad(P ) ,

−2i ω∧G = ∂Aϕ − δΣ 〈〈σc, σ〉〉ad(P ) . (D.15)

Here we use 〈〈 · , · 〉〉ad(P ) to denote the canonical ‘outer-product’ determined by the action

of G on the representation U ,

〈〈 · , · 〉〉ad(P ) :
[
U ⊗ U ′

]
⊗
[
U∗ ⊗ (U ′)∗

]
−→ ad(P )

∣∣
Σ
. (D.16)

Explicitly, if (T I)aa′ for I = 1, . . . ,dim(GS) represent the generators of GS acting on U in a

given basis, then 〈〈σc, σ〉〉ad(P ) = σc
a (T I)aa′ σa′

. Also, δΣ is a two-form with delta-function

support which represents the Poincaré dual of the holomorphic curve Σ inside S.

Based upon (D.15), the on-shell variations of the eight-dimensional fermions ψα m and

ψα̇ m are now

δαψβ =
√

2 ǫαβ

(
∂†Aϕ + ⋆S δΣ〈〈σc, σ〉〉ad(P )

)
, δα̇ψβ = i

√
2(σµ)βα̇ F

(0,1)
µ S ,

δα̇ψβ̇ =
√

2ǫα̇β̇

(
∂†Aϕ + ⋆S δΣ〈〈σc, σ〉〉ad(P )

)
, δαψβ̇ m = i

√
2(σµ)αβ̇ F

(1,0)
µ S . (D.17)

Similarly, by integrating out the eight-dimensional auxiliary field D from the total

action I = IS + IΣ, we arrive at the modified relation

D = − ⋆S

(
ω∧
[
F

(1,1)
S − 1

2
δΣ µ(σ, σ) +

1

2
δΣ µ(σc, σc)

]
+
i

2
[ϕ,ϕ]

)
. (D.18)

Here µ(σ, σ) denotes the moment map associated to the action of GS on the represen-

tation U , and similarly for µ(σc, σc). In terms of the local generators (T I)aa′ which we

introduced to describe the outer-product 〈〈 · , · 〉〉ad(P ), the moment map is given as usual

by µ(σ, σ) = σa(T I)a aσ
a. The on-shell supersymmetry transformations for the eight-

dimensional zero-form fermions are then given by (B.2) but now with D as in equa-

tion (D.18),

δαηβ =
(
σµν
)
αβ Fµν − i ǫαβ D , δα̇ηβ = 0 ,

δαηβ̇ = 0 , δα̇ηβ̇ = (σµν)α̇β̇ Fµν + i ǫα̇β̇ D . (D.19)
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Finally, by inspection of equation (D.11), we note that the auxiliary two-form fields H
and H do not couple to the fields of the six-dimensional theory. In particular, this implies

that the on-shell supersymmetry transformations of the two-form fermions χ and χ are

unchanged in the presence of the six-dimensional defect.

The BPS equations of motion now follow from the requirement that the on-shell vari-

ation of all fermions must vanish in a supersymmetric vacuum. At a practical level, these

are simply the D- and F-flat conditions which arise when all auxiliary fields have been set

to zero. The BPS equations of motion for the six-dimensional fields σ and σc are therefore:

∂A+A′σ = ∂A+A′σc = 0. (D.20)

Because this derives from an F-term, it is protected from quantum corrections. The other

BPS equation of motion which derives from an F-term corresponds to the equation of

motion for ϕ in the presence of the six-dimensional defect theory:

∂Aϕ = δΣ 〈〈σc, σ〉〉ad(P ), ∂Aϕ = 〈〈σc, σ〉〉ad(P ). (D.21)

Note that the above expressions are independent of any metric data. The final BPS equa-

tion of motion on S which derives from an F-term is uncorrected by the presence of the

six-dimensional defect because the auxiliary fields H and H do not couple to the defect:

F
(2,0)
S = 0 , F

(0,2)
S = 0. (D.22)

Finally, the BPS equation of motion on S which derives from a D-term is given by

ω ∧ F (1,1)
S +

i

2
[ϕ,ϕ] =

1

2
ω ∧ δΣ

[
µ(σ, σ) − µ(σc, σc)

]
. (D.23)

Due to the explicit dependence on the Kähler forms of S and Σ, away from the regime

of large volume for both S and Σ, we expect that this equation will generally receive

quantum corrections. Also, though for simplicity we have focused attention solely on the

Yang-Mills theory which lives on the surface S, the parallel BPS equations hold for the

eight-dimensional Yang-Mills theory on S′.

E. A vanishing theorem

In this appendix, we establish the vanishing theorem used in section 3.3.2 to constrain the

zero mode content of the bulk fields in the partially twisted Yang-Mills theory on R
3,1 × S.

See for instance the proof of Theorem 6.1 in [43] for another appearance of this vanishing

theorem.

As throughout, we take S to be a smooth, compact Kähler surface with Kähler form

ω and canonical divisor KS . In order to prove our vanishing theorem, we assume that

−KS ≥ 0, in the sense that the anti-canonical divisor −KS is effective. We also assume

that h2,0(S) = 0, as follows automatically if −KS happens to be ample. Examples of such

surfaces include both the del Pezzo surfaces dPn and the Hirzebruch surfaces Fn.
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We now let E be a complex vector bundle over S which is endowed with a hermitian

metric and a compatible unitary connection A solving the hermitian Yang-Mills equa-

tions on S,

F
(2,0)
A = F

(0,2)
A = ω · FA = 0 . (E.1)

Here ω · FA is shorthand for the contraction of ω with FA as defined using the Kähler

metric on S. In local coordinates (sn, sn) on S,

ω · FA = ωnn
[
FA

]
nn , (E.2)

where we sum over repeated indices n, n = 1, 2 in (E.2).

Because ω is self-dual, the vanishing of ω · FA is equivalent to the vanishing of ω∧FA.

Hence the equations in (E.1) correspond to the bulk BPS equations (3.32), (3.33), (3.34)

on S in a background with ϕ = 0, where E is any vector bundle associated to the principal

G-bundle P on S. In fact, if S is a del Pezzo or Hirzebruch surface, ϕ necessarily vanishes

for any solution of the bulk BPS equations. Otherwise, if ϕ were nontrivial as an element

in H0
∂
(S,KS ⊗ad(P )), then at least one Casimir of ϕ would be non-vanishing. Hence some

positive power of KS would admit a non-trivial holomorphic section. But on del Pezzo and

Hirzebruch surfaces, no positive powers of KS admit holomorphic sections, so ϕ = 0.

We now state the vanishing theorem. First, we recall that because the (2, 0) and (0, 2)

components of FA vanish according to (E.1), E admits a holomorphic structure. That

is, if we let dA be the covariant derivative defined by the unitary connection on E, then

the (0, 1) component ∂A = d
(0,1)
A of the covariant derivative satisfies ∂2

A = 0 and thereby

defines a holomorphic structure on E.

Under the assumptions on S above, we now claim that E satisfies

H2
∂
(S,E) = 0 . (E.3)

Further, if E is irreducible and non-trivial (meaning E 6= OS), then also

H0
∂
(S,E) = 0 . (E.4)

Proof of the vanishing theorem. To prove the vanishing theorem in (E.3), we first

assume without loss that E is irreducible. Otherwise, E splits holomorphically as a direct

sum of irreducible bundles Ej for j running in some index set J ,

E =
⊕

j∈J

Ej . (E.5)

Each summand Ej also carries a unitary connection satisfying the hermitian Yang-Mills

equations in (E.1), and trivially

H2
∂
(S,E) =

⊕

j∈J

H2
∂
(S,Ej) . (E.6)

Thus to demonstrate (E.3), we restrict attention to the irreducible summands of E.

The proof of the vanishing theorem now proceeds in two steps. In the first step, we

show that if the irreducible bundle E is non-trivial, then H0
∂
(S,E) = 0. Alternatively, if

– 77 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
8

E is irreducible but trivial, so that E = OS , the vanishing theorem follows immediately by

our assumption that h2,0(S) = 0. In the second step, assuming E 6= OS , we apply Serre

duality to deduce the vanishing of H2
∂
(S,E) from the vanishing of H0

∂
(S,E).

To show that H0
∂
(S,E) = 0 if E is irreducible and non-trivial, let us assume otherwise.

Therefore E admits a non-trivial holomorphic section s.

We now recall a basic fact from Hodge theory. First, we let dA
† and ∂†A denote the

adjoints of dA and ∂A defined using the Kähler metric on S and the hermitian metric on

E. Then as shown for instance in Ch. 4 of [44], we have the following Hodge identity of

linear operators acting on sections of E,

2 ∂†A∂A = dA
†dA − i ω · FA . (E.7)

For completeness, we include a proof of (E.7) towards the end of this appendix. Because

∂As = ω · FA = 0, we deduce from (E.7) that

0 = 2

∫

S

∥∥∂As
∥∥2

=

∫

S

∥∥dAs
∥∥2
. (E.8)

Therefore dAs = 0, and s is a covariantly constant section of E.

Because s is covariantly constant, s is a nowhere-vanishing holomorphic section of

E. Hence s defines an inclusion of the trivial line bundle OS as a rank one holomorphic

subbundle of E,

0 −→ OS
s−→ E . (E.9)

We let O⊥
S denote the orthocomplement to s in E, defined using the hermitian metric on

E. Because dA respects that metric, O⊥
S in turn carries an induced unitary connection23

satisfying the hermitian Yang-Mills equations (E.1), and in particular O⊥
S is holomorphic.

Consequently E splits as a sum of holomorphic bundles

E = OS ⊕O⊥
S . (E.10)

Since E 6= OS , the bundle O⊥
S must have non-zero rank, but then (E.10) contradicts our

assumption that E be irreducible. Hence

H0
∂
(S,E) = 0 . (E.11)

We are left to consider (E.11) in light of Serre duality. Under duality,

H2
∂
(S,E) ∼= H0

∂
(S,E∗ ⊗OS(KS))∗ . (E.12)

However, because −KS ≥ 0 is effective, we also have an inclusion

H0
∂
(S,E∗ ⊗OS(KS)) ⊆ H0

∂
(S,E∗) . (E.13)

The inclusion in (E.13) follows once we recall that sections of OS(KS) for KS ≤ 0 can be

interpreted as holomorphic functions on S which vanish along the effective divisor −KS .

23Note that if s⊥ is any section of O⊥

S , then 0 = d(s, s⊥) = (dAs, s⊥) + (s, dAs⊥) = (s, dAs⊥), so dA

restricts immediately to a unitary connection on O
⊥

S .
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As a result, holomorphic sections of the product E∗⊗OS(KS) are the same as holomorphic

sections of E∗ which similarly vanish along −KS .

Now, if E admits a non-trivial irreducible unitary connection satisfying the hermitian

Yang-Mills equations (E.1), then so does the dual E∗. Thus the vanishing result in (E.11)

applies equally well to E∗,

H0
∂
(S,E∗) = 0 . (E.14)

Together, (E.12), (E.13), and (E.14) finally imply the basic vanishing theorem

H2
∂
(S,E) = 0 . (E.15)

Corollaries. The vanishing theorem in (E.15) has a few immediate corollaries which

strongly constrain the low-energy spectrum of the partially twisted Yang-Mills theory on

R
3,1 × S. First, as we observed in relation to (E.14), if E admits a hermitian Yang-Mills

connection satisfying (E.1), then so doesE∗. Thus the vanishing theorem for E immediately

applies to E∗ as well, so that

H2
∂
(S,E∗) = 0 . (E.16)

Equivalently by Serre duality,

H0
∂
(S,E ⊗O(KS)) = 0 . (E.17)

More generally, since E is any vector bundle associated to the principal G-bundle P on

S, the vanishing theorem trivially applies to any complex vector bundle ρ(E) constructed

by taking tensor products of E and E∗, such as ∧2E or End0(E). Equivalently, the her-

mitian Yang-Mills connection on E induces a corresponding connection on ρ(E). Thus the

vanishing theorem in (E.15) can be recast more broadly as

H2
∂
(S, ρ(E)) = 0 . (E.18)

Finally, the bulk Yukawa couplings (3.53) on S always involve the appearance of

H2
∂
(S,E)∗ for some vector bundle E associated to the principal G-bundle P on S. Hence

besides constraining the massless spectrum, the vanishing theorem (E.15) implies that all

bulk Yukawa couplings vanish when the Kähler surface S satisfies −KS ≥ 0 and h2,0(S) = 0.

A Hodge identity. For the sake of completeness, we include here a proof of the Hodge

identity in (E.7). This identity holds for sections of an arbitrary holomorphic vector bundle

E over a compact Kähler manifold S.

To setup notation, let Λ be the operator which acts on sections of Ω∗
S⊗E by contraction

with the Kähler form ω. According to standard Hodge theory (see §0.7 and §1.2 of [45]),

Λ satisfies

∂†A = i
[
∂A,Λ

]
, ∂†A = −i

[
∂A,Λ

]
. (E.19)

Here ∂A and ∂A are the (1, 0) and (0, 1) components of the covariant derivative dA acting

on sections of Ω∗
S ⊗ E,
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According to (E.19), when ∂† and ∂†A act on bundle-valued forms of type (0, 1) or (1, 0)

(which are trivially annihilated by Λ), we can write

∂†A = −iΛ ∂A , ∂†A = iΛ ∂A . (E.20)

Thus, when acting on sections of E,

dA
†dA =

(
∂†A + ∂†A

) (
∂A + ∂A

)
,

=
(
iΛ ∂A − iΛ ∂A

) (
∂A + ∂A

)
,

= −iΛ
(
∂A ∂A − ∂A ∂A

)
.

(E.21)

In passing to the final line of (E.21), we use that ∂2
A = ∂2

A = 0.

For the same reason, FA = d2
A = ∂A ∂A + ∂A ∂A. So again when acting on sections

of E,

ω · FA = Λ d2
A = Λ

(
∂A ∂A + ∂A ∂A

)
. (E.22)

Comparing (E.21) to (E.22) and using the identity in (E.20), we conclude

dA
†dA = i ω · FA − 2iΛ ∂A ∂A ,

= i ω · FA + 2 ∂†A∂A .
(E.23)

Examples for line bundles on S. We now describe some examples of line bundles on

S which admit an anti-self-dual connection satisfying the Hermitian Yang-Mills equations

in (E.1). Although we do not present an exhaustive list, there are a large number of

candidate line bundles which allow us to tune the chiral matter spectrum of the resulting

theory. As a warmup, we first characterize all candidate line bundles for the Hirzebruch

surfaces Fn for n ≥ 0. A candidate Kähler class ω = af + bσ satisfies:

ω · f , ω · σ > 0 (E.24)

or:

b > 0, a > bn . (E.25)

Given a line bundle L on Fn such that c1(L) = Af + Bσ, the condition that c1(L) be

anti-self-dual implies

ω · c1(L) = Ab+B(a− bn) = 0 , (E.26)

which admits a non-trivial solution for a and b satisfying the inequalities of (E.25) if and

only if AB < 0.

We now consider line bundles L on a del Pezzo surface dPn for which c1(L) is given by

c1(L) =

n∑

i=1

aiEi . (E.27)

We claim that if aiaj < 0 for some i 6= j, then there exists a parametric family of Kähler

classes ω such that the condition ω · c1(L) = 0 holds.
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Clearly, the condition on the integers ai implies that there exist positive integers bi > 0

such that
n∑

i=1

bi ai = 0. (E.28)

We next observe that the following choice for ω defines a Kähler class on dPn if the pa-

rameter A appearing below is sufficiently large,

ω = AH −
n∑

i=1

biEi . (E.29)

Indeed, by inspection of the generators of the Kähler cone given in appendix A, we note

that when A is sufficiently large,

ω ·Gi > 0 (E.30)

where Gi is any effective divisor on dPn. Finally, by construction, ω · c1(L) = 0.

We note that in the limit that A is large, the volume of S is also large. Although the

D-term condition ω · c1(L) = 0 might receive quantum corrections away from the large-

volume limit, we expect that the line bundles L determined by (E.27) are still associated

to supersymmetric solutions on S when the volume of S is large enough.

F. Explicit deformations of an E7 singularity

In this appendix we collect the explicit expressions for the unfolding of the E7 singularity

used in subsection 4.3.2. The leading order behavior of each βi as a polynomial in the ti
is:

β2α
2 = α2

(
16(s1)

2 +O(ti)
)

(F.1)

β4α
2 = α2

(
16

3
(s2)

2 − 8s1s3 +O(ti)

)
(F.2)

β6α
3 = α3

(
−128

27
(s2)

3 +
32

3
s1s2s3 −

32

3
(s1)

2 s4 +O(t2i )

)
(F.3)

β8α
3 = α3

(
−8

3s2(s3)
2 + 32

9 (s2)
2s4 + 8

3s1s3s4 − 16
3 s1s2s5

+16(s1)
2s6 +O(t2i )

)
(F.4)

β10α
4 = α4




32
9 (s2)

2(s3)
2 − 8

3s1(s3)
3 − 128

27 (s2)
3s4 − 16

3 (s1)
2(s4)

2

+64
9 s1(s2)

2s5 + 32
3 (s1)

2s3s5 + 32
3 (s1)

2 s2s6
−64(s1)

3s7 +O(t3i )


 (F.5)

β12α
4 = α4




1
3(s3)

4 − 8
9s2(s3)

2s4 + 16
27 (s2)

2(s4)
2 + 16

9 s1s3(s4)
2

−8
3s1(s3)

2s5 − 16
9 s1s2s4s5 + 16

3 (s1)
2(s5)

2 + 8s1s2s3s6
−32

3 (s1)
2s4s6 − 16s1(s2)

2s7 +O(t3i )


 (F.6)
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β14α
5 = α5




−8
9s2(s3)

4 + 64
27 (s2)

2(s3)
2s4 + 8

9s1(s3)
3s4

−128
81 (s2)

3(s4)
2 − 128

81 (s2)
3(s4)

2 − 32
9 s1s2s3(s4)

2

+64
27(s1)

2(s4)
3 + 16

9 s1s2(s3)
2s5 + 128

27 s1(s2)
2s4s5

−32
9 (s1)

2s3s4s5 + 64
9 (s1)

2s2(s5)
2 − 32

3 s1(s2)
2s3s6

+16
3 (s1)

2(s3)
2s6 − 32

9 (s1)
2s2s4s6 − 64

3 (s1)
3s5s6

+64
3 s1(s2)

3s7 − 64(s1)
2s2s3s7 + 256

3 (s1)
3s4s7 +O(t4i )




(F.7)

β18α
6 = α6




2
27(s3)

6 − 8
27s2(s3)

4s4 + 32
81(s2)

2(s3)
2(s4)

2

+16
27s1(s3)

3(s4)
2 − 128

729(s2)
3(s4)

3 − 64
81s1s2s3(s4)

3

+64
81(s1)

2(s4)
4 − 8

9s1(s3)
4s5 + 16

27s1s2(s3)
2s4s5

+64
81s1(s2)

2(s4)
2s5 − 64

27(s1)
2s3(s4)

2s5 + 32
9 (s1)

2(s3)
2(s5)

2

+64
27(s1)

2s2s4(s5)
2 − 128

27 (s1)
3(s5)

3 + 8
3s1s2(s3)

3s6
−32

9 s1(s2)
2s3s4s6 − 32

9 (s1)
2(s3)

2s4s6 − 64
27(s1)

2s2(s4)
2s6

+32
3 (s1)

2s2s3s5s6 + 128
9 (s1)

3s4s5s6 + 16(s1)
2(s2)

2(s6)
2

−16
3 s1(s2)

2(s3)
2s7 + 64

9 s1(s2)
3s4s7 + 128

3 (s1)
2s2s3s4s7

−256
9 (s1)

3(s4)
2s7 − 128

3 (s1)
2(s2)

2s5s7 +O(t5i )




. (F.8)

By inspection, when a single ti develops a pole, we find that each coefficient is regular in

α and does not vanish when α equals zero.

G. Higher exotic singularities

The results of section 5 provide a gauge theory interpretation of models where the singu-

larity type GS of rank r present at generic points of the surface enhances to a gauge group

of rank r + 2 at a discrete collection of points in S. Our expectation is that this analysis

remains valid provided the singularity at such a point is of ADE type. In this appendix

we discuss the more exotic possibility where the singularity type degenerates further. An

example of this phenomenon is the minimal Weierstrass model:

y2 = x3 + αxz3 + βz5 + γz6 + γ′xz4. (G.1)

so that GΣ = E8 and GS = E7. In a consistent compact model, the coefficients γ and γ′

control the separation between the singularity located at z = 0 and other singularities at

infinity in the z coordinate.

At the intersection point of the curves (α = 0) and (β = 0), the Weierstrass model

degenerates further. This has been studied in detail in [23] where this singular behavior was

matched to a codimension three degeneration of an instanton bundle in the corresponding

heterotic dual. We first summarize the findings of [23] and also add a few points to its

physical interpretation. As explained in [23], in the limit where the Kähler class of the

elliptic fibration is of zero size, the resulting singularity cannot be resolved. Because

a consistent F-theory compactification has vanishing Kähler class for the elliptic curve,

we physically interpret this to mean that in a four-dimensional theory we can expect

exotic physical phenomena from such enhancements in singularity type. However, as

explained in [23], by performing a partial blowup of theE7 singularity, the exotic singularity

disappears. In F-theory this corresponds to the fact that if we compactify the theory on a
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circle to three dimensions and turn on a Wilson line around the circle, the exotic singularity

disappears. In other words, no extra blowup is necessary to resolve the singularity. This

suggests that whatever the degrees of freedom responsible for the exotic singularity may

correspond to, these degrees of freedom are charged under the E7 gauge group so that

when an E7 Wilson line develops a vev, the resulting degrees of freedom develop a mass.

Perhaps one of the most interesting aspects of the blowup considered in [23] is that

the minimal resolution of the singularity breaks the E7 group to a rank seven group which

is given by SU(3) × SU(2) × U(1) × G for some rank three group G. This is remarkable

because this breaking pattern is consistent with preserving the Standard Model gauge

group! We find this quite intriguing and worthy of further investigation. Here we explain

the relevant geometric facts about the blowup and explain how the Standard Model gauge

group remains intact after the blowup.

To better understand the singular degeneration locus, we first study a blowup of the

geometry near the singular locus x = y = z = 0. Following [23], we introduce an additional

projective coordinate λ of weight −1 and perform a weighted blowup by assigning weights

1, 2, 3 to z, x and y. Performing the change of coordinates:

x 7→ λ2x, y 7→ λ3y, z 7→ λz, (G.2)

we note that this assignment of weights preserves the scaling of the holomorphic four form.

The geometry is now given by:

λy2 = λx3 + αxz3 + βz5 + λ2γz6 + λ2γ′xz4 (G.3)

which reduces to the original Weierstrass model when λ = 1. Note, however, that in the

patch λ = 0, the hypersurface becomes:

0 = αxz3 + βz5 (G.4)

which is trivially satisfied when α = β = 0. Precisely at the point of degeneration, the

parameters x, y and z are unconstrained and parameterize an entire weighted projective

space P
2
[1,2,3]. Note that the presence of the higher order terms γ and γ′ does not alter this

conclusion so that the resulting physics remains insensitive to global details of the com-

pactification. Away from points in S where α and β both vanish, the blowup corresponds

to a curve inside of P
2
[1,2,3] which collapses to a point in the blowdown.

Although the blowup does not change the rank of the gauge group, the end result now

contains additional simple group factors and a U(1) factor at the location of the blown up

node of the Dynkin diagram. We now show that the geometry still contains a A2 × A1

type singularity so that the non-abelian gauge group factors of the Standard Model remain

intact. Restricting to the patch x = 1 of equation (G.3) and dropping the irrelevant

contribution from γ and γ′, note that rescaling the remaining coordinates by ζ yields:

ζ5λy2 = ζ−1λ+ ζ3αz3 + ζ5βz5 (G.5)

so that the above equation remains invariant when ζ2 = 1. Indeed, note that the condition

x = 1 is preserved under the rescaling x 7→ ζ2x. This establishes the presence of an A1
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type singularity. Next restrict to the patch y = 1. In this case, rescaling by η yields:

η−1λ = η5λx3 + η5αxz3 + η5βz5 (G.6)

so that the above equation remains invariant when η6 = 1. On the other hand, the

condition y = 1 is preserved under the rescaling y 7→ η3y provided η3. This establishes the

presence of a Z3 × Z2 = A2 ×A1 orbifold singularity in the geometry.
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